BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21185916)

  • 1. The possible additional role of the cystic fibrosis transmembrane regulator to motoneuron inhibition produced by glycine effects.
    Morales FR; Silveira V; Damián A; Higgie R; Pose I
    Neuroscience; 2011 Mar; 177():138-47. PubMed ID: 21185916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator modulates synaptic chloride homeostasis in motoneurons of the rat spinal cord during neonatal development.
    Ostroumov A; Simonetti M; Nistri A
    Dev Neurobiol; 2011 Mar; 71(3):253-68. PubMed ID: 21308994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia.
    Brooks PL; Peever JH
    J Neurosci; 2008 Apr; 28(14):3535-45. PubMed ID: 18385312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro.
    Pagnotta SE; Lape R; Quitadamo C; Nistri A
    Neuroscience; 2005; 130(3):783-95. PubMed ID: 15590160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects induced by the sulphonylurea glibenclamide on the neonatal rat spinal cord indicate a novel mechanism to control neuronal excitability and inhibitory neurotransmission.
    Ostroumov K; Grandolfo M; Nistri A
    Br J Pharmacol; 2007 Jan; 150(1):47-57. PubMed ID: 17128288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postsynaptic inhibition of hypoglossal motoneurons produces atonia of the genioglossal muscle during rapid eye movement sleep.
    Fung SJ; Chase MH
    Sleep; 2015 Jan; 38(1):139-46. PubMed ID: 25325470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasopressin facilitates glycinergic and GABAergic synaptic transmission in developing hypoglossal motoneurons.
    Reymond-Marron I; Raggenbass M; Zaninetti M
    Eur J Neurosci; 2005 Mar; 21(6):1601-9. PubMed ID: 15845087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of motoneuron function and muscle tone during REM sleep, REM sleep behavior disorder and cataplexy/narcolepsy.
    Peever J
    Arch Ital Biol; 2011 Dec; 149(4):454-66. PubMed ID: 22205591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus.
    Song W; Chattipakorn SC; McMahon LL
    J Neurophysiol; 2006 Apr; 95(4):2366-79. PubMed ID: 16381810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of synaptic transmission from the reticular formation dorsal to the facial nucleus to trigeminal motoneurons during early postnatal development in rats.
    Gemba-Nishimura A; Inoue T; Nakamura S; Nakayama K; Mochizuki A; Shintani S; Yoshimura S
    Neuroscience; 2010 Mar; 166(3):1008-22. PubMed ID: 20060035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of excitatory synaptic transmission in the trigeminal motor nucleus by the nitric oxide-cyclic GMP signaling pathway.
    Pose I; Silveira V; Morales FR
    Brain Res; 2011 Jun; 1393():1-16. PubMed ID: 21396351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of glycinergic synaptic transmission in the trigeminal and hypoglossal motor nuclei by the nitric oxide-cyclicGMP signaling pathway.
    Pose I; Silveira V; Damián A; Higgie R; Morales FR
    Neuroscience; 2014 May; 267():177-86. PubMed ID: 24626159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.
    Morales FR; Sampogna S; Rampon C; Luppi PH; Chase MH
    Neuroscience; 2006 Sep; 142(1):37-47. PubMed ID: 16891059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA(B) modulation of GABA(A) and glycine receptor-mediated synaptic currents in hypoglossal motoneurons.
    O'Brien JA; Sebe JY; Berger AJ
    Respir Physiol Neurobiol; 2004 Jul; 141(1):35-45. PubMed ID: 15234674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative ultrastructural analysis of glycine- and gamma-aminobutyric acid-immunoreactive terminals on trigeminal alpha- and gamma-motoneuron somata in the rat.
    Bae YC; Choi BJ; Lee MG; Lee HJ; Park KP; Zhang LF; Honma S; Fukami H; Yoshida A; Ottersen OP; Shigenaga Y
    J Comp Neurol; 2002 Jan; 442(4):308-19. PubMed ID: 11793336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of γ-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on rat jaw-opening motoneurons.
    Paik SK; Kwak WK; Bae JY; Na YK; Park SY; Yi HW; Ahn DK; Ottersen OP; Yoshida A; Bae YC
    J Comp Neurol; 2012 Apr; 520(6):1212-26. PubMed ID: 21935946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic transmission from the supratrigeminal region to jaw-closing and jaw-opening motoneurons in developing rats.
    Nakamura S; Inoue T; Nakajima K; Moritani M; Nakayama K; Tokita K; Yoshida A; Maki K
    J Neurophysiol; 2008 Oct; 100(4):1885-96. PubMed ID: 18753330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the excitability of hindlimb motoneurons during muscular atonia induced by stimulating the pedunculopontine tegmental nucleus in cats.
    Takakusaki K; Habaguchi T; Saitoh K; Kohyama J
    Neuroscience; 2004; 124(2):467-80. PubMed ID: 14980396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined antagonism of aminergic excitatory and amino acid inhibitory receptors in the XII nucleus abolishes REM sleep-like depression of hypoglossal motoneuronal activity.
    Fenik V; Davies RO; Kubin L
    Arch Ital Biol; 2004 May; 142(3):237-49. PubMed ID: 15260378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of ethanol on GABA(A) and glycine receptor-mediated synaptic currents in brain stem motoneurons.
    Sebe JY; Eggers ED; Berger AJ
    J Neurophysiol; 2003 Aug; 90(2):870-5. PubMed ID: 12702707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.