BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21185916)

  • 21. The atonia and myoclonia of active (REM) sleep.
    Chase MH; Morales FR
    Annu Rev Psychol; 1990; 41():557-84. PubMed ID: 1968326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early and transient increase in spontaneous synaptic inputs to the rat facial motoneurons after axotomy in isolated brainstem slices of rats.
    Ikeda R; Kato F
    Neuroscience; 2005; 134(3):889-99. PubMed ID: 15994018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Confirmation of the consensus that glycinergic postsynaptic inhibition is responsible for the atonia of REM sleep.
    Chase MH
    Sleep; 2008 Nov; 31(11):1487-91. PubMed ID: 19014068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons.
    Ziskind-Conhaim L; Gao BX; Hinckley C
    J Neurophysiol; 2003 Feb; 89(2):806-13. PubMed ID: 12574458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical properties of interneurons found within the trigeminal motor nucleus.
    McDavid S; Verdier D; Lund JP; Kolta A
    Eur J Neurosci; 2008 Sep; 28(6):1136-45. PubMed ID: 18783374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep.
    Yamuy J; Fung SJ; Xi M; Morales FR; Chase MH
    Neuroscience; 1999; 94(1):11-5. PubMed ID: 10613491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Discrete Glycinergic Neuronal Population in the Ventromedial Medulla That Induces Muscle Atonia during REM Sleep and Cataplexy in Mice.
    Uchida S; Soya S; Saito YC; Hirano A; Koga K; Tsuda M; Abe M; Sakimura K; Sakurai T
    J Neurosci; 2021 Feb; 41(7):1582-1596. PubMed ID: 33372061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alpha-aminoazaheterocyclic-methylglyoxal adducts do not inhibit cystic fibrosis transmembrane conductance regulator chloride channel activity.
    Sonawane ND; Zegarra-Moran O; Namkung W; Galietta LJ; Verkman AS
    J Pharmacol Exp Ther; 2008 May; 325(2):529-35. PubMed ID: 18272811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Swallow-related inhibition in laryngeal motoneurons.
    Suzuki T; Nakazawa K; Shiba K
    Neurosci Res; 2010 Aug; 67(4):327-33. PubMed ID: 20434496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BDNF-mediated modulation of glycine transmission on rat spinal motoneurons.
    Ding JD; Tang XY; Shi JG; Jia LS
    Neurosci Lett; 2014 Aug; 578():95-9. PubMed ID: 24993297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of inhibitory synaptic transmission to the superior salivatory nucleus in rats.
    Mitoh Y; Funahashi M; Fujii A; Fujita M; Kobashi M; Matsuo R
    Brain Res; 2008 Jan; 1191():47-54. PubMed ID: 18155184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The unique inhibitory potentials in motoneurons that occur during active sleep are comprised of minimal unitary potentials.
    Engelhardt JK; Fung SJ; Yamuy J; Xi MC; Morales FR; Chase MH
    Brain Res; 2004 Aug; 1018(1):26-31. PubMed ID: 15262201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient oxidative stress evokes early changes in the functional properties of neonatal rat hypoglossal motoneurons in vitro.
    Nani F; Cifra A; Nistri A
    Eur J Neurosci; 2010 Mar; 31(6):951-66. PubMed ID: 20214680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons.
    Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N
    Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convergent pre-motoneuronal inputs to single trigeminal motoneurons.
    Nonaka M; Nishimura A; Nakamura S; Nakayama K; Mochizuki A; Iijima T; Inoue T
    J Dent Res; 2012 Sep; 91(9):888-93. PubMed ID: 22772363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis.
    Brooks PL; Peever JH
    J Neurosci; 2012 Jul; 32(29):9785-95. PubMed ID: 22815493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder.
    Luppi PH; Clément O; Sapin E; Gervasoni D; Peyron C; Léger L; Salvert D; Fort P
    Sleep Med Rev; 2011 Jun; 15(3):153-63. PubMed ID: 21115377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep.
    Chase MH; Soja PJ; Morales FR
    J Neurosci; 1989 Mar; 9(3):743-51. PubMed ID: 2926479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postnatal development of persistent inward currents in rat XII motoneurons and their modulation by serotonin, muscarine and noradrenaline.
    Revill AL; Chu NY; Ma L; LeBlancq MJ; Dickson CT; Funk GD
    J Physiol; 2019 Jun; 597(12):3183-3201. PubMed ID: 31038198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. State-dependent control of lumbar motoneurons by the hypocretinergic system.
    Yamuy J; Fung SJ; Xi M; Chase MH
    Exp Neurol; 2010 Feb; 221(2):335-45. PubMed ID: 19962375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.