BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 21186138)

  • 1. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II).
    Li J; Li Q; Lu C; Zhao L; Lin JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):700-5. PubMed ID: 21186138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid.
    Li J; Li Q; Lu C; Zhao L
    Analyst; 2011 Jun; 136(11):2379-84. PubMed ID: 21491030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental studies on the chemiluminescence reaction mechanism of carbonate/bicarbonate and hydrogen peroxide in the presence of cobalt(II).
    Liang SX; Zhao LX; Zhang BT; Lin JM
    J Phys Chem A; 2008 Jan; 112(4):618-23. PubMed ID: 18173250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction mechanism of surfactant-sensitized chemiluminescence of bis(2,4,6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles.
    Liang SX; Li H; Lin JM
    Luminescence; 2008; 23(6):381-5. PubMed ID: 18551430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles.
    Lu C; Zhang N; Li J; Li Q
    Talanta; 2010 Apr; 81(1-2):698-702. PubMed ID: 20188984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles.
    Lu C; Zu Y; Yam VW
    Anal Chem; 2007 Jan; 79(2):666-72. PubMed ID: 17222035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor.
    Huang CC; Tseng WL
    Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution.
    Xiao Q; Shang F; Xu X; Li Q; Lu C; Lin JM
    Biosens Bioelectron; 2011 Dec; 30(1):211-5. PubMed ID: 21978483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids.
    Li Q; Shang F; Lu C; Zheng Z; Lin JM
    J Chromatogr A; 2011 Dec; 1218(50):9064-70. PubMed ID: 22055524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The new approach for captopril detection employing triangular gold nanoparticles-catalyzed luminol chemiluminescence.
    Chen Q; Bai S; Lu C
    Talanta; 2012 Jan; 89():142-8. PubMed ID: 22284472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH upon surface-enhanced enzyme-catalyzed luminol chemiluminescence at vicinity of nanoscale-corrugated gold and silver films.
    Ou M; Lu G; Shen H; Descamps A; Marquette CA; Blum LJ; Roux S; Tillement O; Cheng B; Perriat P
    Photochem Photobiol; 2008; 84(5):1244-8. PubMed ID: 18422876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate.
    Zhang ZF; Cui H; Shi MJ
    Phys Chem Chem Phys; 2006 Feb; 8(8):1017-21. PubMed ID: 16482345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced effect of aggregated gold nanoparticles on luminol chemiluminescence system and its analytical application.
    Qi Y; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():1-6. PubMed ID: 23602952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor.
    Cui H; Wang W; Duan CF; Dong YP; Guo JZ
    Chemistry; 2007; 13(24):6975-84. PubMed ID: 17539034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.
    Laaksonen T; Ahonen P; Johans C; Kontturi K
    Chemphyschem; 2006 Oct; 7(10):2143-9. PubMed ID: 16969881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of methodology based on the formation process of gold nanoshells for detecting hydrogen peroxide scavenging activity.
    Li H; Ma X; Dong J; Qian W
    Anal Chem; 2009 Nov; 81(21):8916-22. PubMed ID: 19824625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.
    Xu SL; Cui H
    Luminescence; 2007; 22(2):77-87. PubMed ID: 17089353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles.
    Islam MS; Kang SH
    Talanta; 2011 May; 84(3):752-8. PubMed ID: 21482278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach for bisphenol A detection employing fluorosurfactant-capped gold nanoparticle-amplified chemiluminescence from cobalt(II) and peroxymonocarbonate.
    Pan F; Liu L; Dong S; Lu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():393-7. PubMed ID: 24682053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine.
    Wu HP; Huang CC; Cheng TL; Tseng WL
    Talanta; 2008 Jul; 76(2):347-52. PubMed ID: 18585288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.