These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21186328)
1. Quantitative real-time PCR assay for rapid detection of plant and human pathogenic Macrophomina phaseolina from field and environmental samples. Babu BK; Mesapogu S; Sharma A; Somasani SR; Arora DK Mycologia; 2011; 103(3):466-73. PubMed ID: 21186328 [TBL] [Abstract][Full Text] [Related]
2. Real-time quantitative PCR detection of Mycobacterium avium subsp. paratuberculosis and differentiation from other mycobacteria using SYBR Green and TaqMan assays. Ravva SV; Stanker LH J Microbiol Methods; 2005 Dec; 63(3):305-17. PubMed ID: 15927290 [TBL] [Abstract][Full Text] [Related]
3. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. Zhang Z; Zhang J; Wang Y; Zheng X FEMS Microbiol Lett; 2005 Aug; 249(1):39-47. PubMed ID: 16019161 [TBL] [Abstract][Full Text] [Related]
4. Detection of Thielaviopsis basicola in soil with real-time quantitative PCR assays. Huang J; Kang Z Microbiol Res; 2010 Jul; 165(5):411-7. PubMed ID: 19837572 [TBL] [Abstract][Full Text] [Related]
5. Specific and sensitive detection of Ralstonia solanacearum in soil with quantitative, real-time PCR assays. Huang J; Wu J; Li C; Xiao C; Wang G J Appl Microbiol; 2009 Nov; 107(5):1729-39. PubMed ID: 19486215 [TBL] [Abstract][Full Text] [Related]
6. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Alaei H; Baeyen S; Maes M; Höfte M; Heungens K J Microbiol Methods; 2009 Feb; 76(2):136-45. PubMed ID: 18940207 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Ha Y; Fessehaie A; Ling KS; Wechter WP; Keinath AP; Walcott RR Phytopathology; 2009 Jun; 99(6):666-78. PubMed ID: 19453225 [TBL] [Abstract][Full Text] [Related]
8. Detection and quantification of Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real-time PCR. Timmusk S; Paalme V; Lagercrantz U; Nevo E J Appl Microbiol; 2009 Sep; 107(3):736-45. PubMed ID: 19291233 [TBL] [Abstract][Full Text] [Related]
9. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR. Castrillo LA; Thomsen L; Juneja P; Hajek AE Mycol Res; 2007 Mar; 111(Pt 3):324-31. PubMed ID: 17363233 [TBL] [Abstract][Full Text] [Related]
10. [Quantitative PCR in the diagnosis of Leishmania]. Mortarino M; Franceschi A; Mancianti F; Bazzocchi C; Genchi C; Bandi C Parassitologia; 2004 Jun; 46(1-2):163-7. PubMed ID: 15305709 [TBL] [Abstract][Full Text] [Related]
11. Development of a rapid PCR-Nucleic Acid Lateral Flow Immunoassay (PCR-NALFIA) based on rDNA IGS sequence analysis for the detection of Macrophomina phaseolina in soil. Pecchia S; Da Lio D J Microbiol Methods; 2018 Aug; 151():118-128. PubMed ID: 29959955 [TBL] [Abstract][Full Text] [Related]
12. Using the TxtAB operon to quantify pathogenic Streptomyces in potato tubers and soil. Qu X; Wanner LA; Christ BJ Phytopathology; 2008 Apr; 98(4):405-12. PubMed ID: 18944188 [TBL] [Abstract][Full Text] [Related]
13. Specific detection of Aspergillus carbonarius by SYBR Green and TaqMan quantitative PCR assays based on the multicopy ITS2 region of the rRNA gene. González-Salgado A; Patiño B; Gil-Serna J; Vázquez C; González-Jaén MT FEMS Microbiol Lett; 2009 Jun; 295(1):57-66. PubMed ID: 19473251 [TBL] [Abstract][Full Text] [Related]
15. Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils. da Rocha UN; van Elsas JD; van Overbeek LS J Microbiol Methods; 2010 Nov; 83(2):141-8. PubMed ID: 20801169 [TBL] [Abstract][Full Text] [Related]
16. Genetic differentiation of charcoal rot pathogen, Macrophomina phaseolina, into specific groups using URP-PCR. Jana TK; Singh NK; Koundal KR; Sharma TR Can J Microbiol; 2005 Feb; 51(2):159-64. PubMed ID: 16091774 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of post-polymerase chain reaction melting temperature analysis for meat species identification in mixed DNA samples. López-Andreo M; Garrido-Pertierra A; Puyet A J Agric Food Chem; 2006 Oct; 54(21):7973-8. PubMed ID: 17031997 [TBL] [Abstract][Full Text] [Related]
18. Detection of Tuber melanosporum DNA in soil. Suz LM; Martín MP; Colinas C FEMS Microbiol Lett; 2006 Jan; 254(2):251-7. PubMed ID: 16445753 [TBL] [Abstract][Full Text] [Related]
19. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. Selma MV; Martínez-Culebras PV; Aznar R Int J Food Microbiol; 2008 Feb; 122(1-2):126-34. PubMed ID: 18160163 [TBL] [Abstract][Full Text] [Related]
20. Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine. Salinas F; Garrido D; Ganga A; Veliz G; Martínez C Food Microbiol; 2009 May; 26(3):328-32. PubMed ID: 19269577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]