These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21186382)

  • 21. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.
    Elrod LT; Kim E
    Inorg Chem; 2018 Mar; 57(5):2594-2602. PubMed ID: 29443517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Models for the molybdenum hydroxylases: synthesis, characterization and reactivity of cis-oxosulfido-Mo(VI) complexes.
    Doonan CJ; Nielsen DJ; Smith PD; White JM; George GN; Young CG
    J Am Chem Soc; 2006 Jan; 128(1):305-16. PubMed ID: 16390160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical biosensors.
    Ronkainen NJ; Halsall HB; Heineman WR
    Chem Soc Rev; 2010 May; 39(5):1747-63. PubMed ID: 20419217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization, and biomimetic chemistry of cis-oxosulfidomolybdenum(VI) complexes stabilized by an intramolecular Mo(O)=S...S interaction.
    Laughlin LJ; Eagle AA; George GN; Tiekink ER; Young CG
    Inorg Chem; 2007 Feb; 46(3):939-48. PubMed ID: 17257038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.
    Cervilla A; Pérez-Pla F; Llopis E; Piles M
    Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of the use of genetically engineered enzymes in electrochemical biosensors.
    Campàs M; Prieto-Simón B; Marty JL
    Semin Cell Dev Biol; 2009 Feb; 20(1):3-9. PubMed ID: 19429486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.
    Brondino CD; Rivas MG; Romão MJ; Moura JJ; Moura I
    Acc Chem Res; 2006 Oct; 39(10):788-96. PubMed ID: 17042479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of Ir-Rh and Ir-Mo bonds by using an ancillary ortho-carborane-1,2-diselenolato ligand.
    Jin GX; Wang JQ; Zhang C; Weng LH; Herberhold M
    Angew Chem Int Ed Engl; 2004 Dec; 44(2):259-62. PubMed ID: 15614928
    [No Abstract]   [Full Text] [Related]  

  • 29. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.
    Canne C; Stephan I; Finsterbusch J; Lingens F; Kappl R; Fetzner S; Hüttermann J
    Biochemistry; 1997 Aug; 36(32):9780-90. PubMed ID: 9245410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes.
    Maiti BK; Maia LB; Silveira CM; Todorovic S; Carreira C; Carepo MS; Grazina R; Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2015 Jul; 20(5):821-9. PubMed ID: 25948393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the metal-dithiolate fold angle in mononuclear molybdenum(V) centers by EPR spectroscopy.
    Drew SC; Hanson GR
    Inorg Chem; 2009 Mar; 48(5):2224-32. PubMed ID: 19235982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proposed molecular mechanism for the action of molybedenum in enzymes: coupled proton and electron transfer.
    Stiefel EI
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):988-92. PubMed ID: 4515630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfur K-edge spectroscopic investigation of second coordination sphere effects in oxomolybdenum-thiolates: relationship to molybdenum-cysteine covalency and electron transfer in sulfite oxidase.
    Peariso K; Helton ME; Duesler EN; Shadle SE; Kirk ML
    Inorg Chem; 2007 Feb; 46(4):1259-67. PubMed ID: 17291118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isomerization and oxygen atom transfer reactivity in oxo-Mo complexes of relevance to molybdoenzymes.
    Hoffman JT; Einwaechter S; Chohan BS; Basu P; Carrano CJ
    Inorg Chem; 2004 Nov; 43(24):7573-5. PubMed ID: 15554616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replacement of an oxo by an imido group in oxotransferase model compounds: influence on the oxygen atom transfer.
    Mösch-Zanetti NC; Wurm D; Volpe M; Lyashenko G; Harum B; Belaj F; Baumgartner J
    Inorg Chem; 2010 Oct; 49(19):8914-21. PubMed ID: 20831259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyunsaturated dicarboxylate tethers connecting dimolybdenum redox and chromophoric centers: syntheses, structures, and electrochemistry.
    Cotton FA; Donahue JP; Murillo CA
    J Am Chem Soc; 2003 May; 125(18):5436-50. PubMed ID: 12720458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants.
    Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH
    Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-electron redox energetics in ligand-bridged dinuclear molybdenum and tungsten complexes.
    Lord RL; Schultz FA; Baik MH
    Inorg Chem; 2010 May; 49(10):4611-9. PubMed ID: 20405923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.