BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21186390)

  • 1. Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup.
    Rodríguez-Villarreal AI; Tarn MD; Madden LA; Lutz JB; Greenman J; Samitier J; Pamme N
    Lab Chip; 2011 Apr; 11(7):1240-8. PubMed ID: 21186390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.
    Pamme N; Manz A
    Anal Chem; 2004 Dec; 76(24):7250-6. PubMed ID: 15595866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
    Peyman SA; Iles A; Pamme N
    Lab Chip; 2009 Nov; 9(21):3110-7. PubMed ID: 19823727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions.
    Winkleman A; Perez-Castillejos R; Gudiksen KL; Phillips ST; Prentiss M; Whitesides GM
    Anal Chem; 2007 Sep; 79(17):6542-50. PubMed ID: 17676819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip diamagnetic repulsion in continuous flow.
    Tarn MD; Hirota N; Iles A; Pamme N
    Sci Technol Adv Mater; 2009 Feb; 10(1):014611. PubMed ID: 27877262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrofluid mediated nanocytometry.
    Kose AR; Koser H
    Lab Chip; 2012 Jan; 12(1):190-6. PubMed ID: 22076536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring reaction rates on single particles in a microfluidic device.
    Caulum MM; Henry CS
    Lab Chip; 2008 Jun; 8(6):865-7. PubMed ID: 18497903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous flow separations in microfluidic devices.
    Pamme N
    Lab Chip; 2007 Dec; 7(12):1644-59. PubMed ID: 18030382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic-based purification system with simultaneous sample washing and concentration.
    Ramadan Q; Lau TT; Ho SB
    Anal Bioanal Chem; 2010 Jan; 396(2):707-14. PubMed ID: 19921509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetoanalysis of micro/nanoparticles: a review.
    Suwa M; Watarai H
    Anal Chim Acta; 2011 Apr; 690(2):137-47. PubMed ID: 21435469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical methods for separating and isolating magnetic nanoparticles.
    Stephens JR; Beveridge JS; Williams ME
    Phys Chem Chem Phys; 2012 Mar; 14(10):3280-9. PubMed ID: 22306911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis.
    Xue CD; Sun ZP; Li YJ; Chen JF; Liu B; Qin KR
    Electrophoresis; 2020 Jun; 41(10-11):909-916. PubMed ID: 32145034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined microfluidic-micromagnetic separation of living cells in continuous flow.
    Xia N; Hunt TP; Mayers BT; Alsberg E; Whitesides GM; Westervelt RM; Ingber DE
    Biomed Microdevices; 2006 Dec; 8(4):299-308. PubMed ID: 17003962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.