BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 211865)

  • 21. Real-time monitoring of phosphodiesterase inhibition in intact cells.
    Herget S; Lohse MJ; Nikolaev VO
    Cell Signal; 2008 Aug; 20(8):1423-31. PubMed ID: 18467075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunohistochemical description of cyclic nucleotide phosphodiesterase (PDE) isoenzymes in the human labia minora.
    Ückert S; Oelke M; Albrecht K; Stief C; Jonas U; Hedlund P
    J Sex Med; 2007 May; 4(3):602-608. PubMed ID: 17498099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The enzymatic preparation of [alpha-32P]ATP, [alpha-32P]GTP, [32P]cAMP, and [32P]cGMP, and their use in the assay of adenylate and guanylate cyclases and cyclic nucleotide phosphodiesterases.
    Johnson RA; Walseth TF
    Adv Cyclic Nucleotide Res; 1979; 10():135-67. PubMed ID: 36738
    [No Abstract]   [Full Text] [Related]  

  • 24. Ultracytochemical localizations of adenylate cyclase, guanylate cyclase and cyclic 3',5'-nucleotide phosphodiesterase activity on the trophoblast in the human placenta. Direct histochemical evidence.
    Matsubara S; Tamada T; Saito T
    Histochemistry; 1987; 87(6):505-9. PubMed ID: 2891656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Qualitative and quantitative MS analysis of cyclic nucleotides and related enzymes.
    Newton RP
    Biochem Soc Trans; 1996 Aug; 24(3):938-43. PubMed ID: 8878878
    [No Abstract]   [Full Text] [Related]  

  • 26. Identification, quantitation, and cellular localization of PDE1 calmodulin-stimulated cyclic nucleotide phosphodiesterases.
    Sonnenburg WK; Rybalkin SD; Bornfeldt KE; Kwak KS; Rybalkina IG; Beavo JA
    Methods; 1998 Jan; 14(1):3-19. PubMed ID: 9500854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic nucleotide phosphodiesterase in the aorta of spontaneously hypertensive rats : variation with age and effect of propranolol.
    Bucher B; Stoclet JC
    Artery; 1980; 7(1):44-55. PubMed ID: 6264899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphodiesterase inhibitors for the treatment of erectile dysfunction.
    Küthe A; Montorsi F; Andersson KE; Stief CG
    Curr Opin Investig Drugs; 2002 Oct; 3(10):1489-95. PubMed ID: 12431025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adenosine and guanosine 3',5' cyclic monophosphate phosphodiesterase activities in rat small and large bowel following single and multiple exposure to 1,2-dimethylhydrazine.
    Stevens RH; Loven DP; Singh D
    Drug Chem Toxicol; 1981; 4(2):161-72. PubMed ID: 6274605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assay errors of cyclic 3', 5'-nucleotide phosphodiesterase activity based on the recovery of adenosine alone using an anionic-exchange resin column.
    Ong KK; Rennie PI
    Anal Biochem; 1976 Nov; 76(l):53-62. PubMed ID: 11706
    [No Abstract]   [Full Text] [Related]  

  • 31. Quantitative estimation of 3'5' cyclic AMP phosphodiesterase using anion exchange resin in a batch process.
    Londesborough J
    Anal Biochem; 1976 Apr; 71(2):623-8. PubMed ID: 179448
    [No Abstract]   [Full Text] [Related]  

  • 32. Simultaneous assay of cyclic AMP and cyclic GMP phosphodiesterase activity by anion-exchange column chromatography.
    Hsu DS; Chen SS
    J Chromatogr; 1982 Aug; 245(3):369-72. PubMed ID: 6290518
    [No Abstract]   [Full Text] [Related]  

  • 33. Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast, Saccharomyces cerevisiae.
    Wera S; Ma P; Thevelein JM
    FEBS Lett; 1997 Dec; 420(2-3):147-50. PubMed ID: 9459299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new method for separating cyclic AMP from 5'-AMP with application to the assay for cyclic AMP phosphodiesterase.
    Sinha AK; Colman RW
    Anal Biochem; 1981 May; 113(2):239-45. PubMed ID: 6269457
    [No Abstract]   [Full Text] [Related]  

  • 35. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig.
    Johnson WB; Katugampola S; Able S; Napier C; Harding SE
    Life Sci; 2012 Feb; 90(9-10):328-36. PubMed ID: 22261303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective inhibition by NPT 15392 of lymphocyte cyclic GMP phosphodiesterase.
    Coffey RG; Hartley L; Polson JB; Krzanowski JJ; Hadden JW
    Biochem Pharmacol; 1984 Nov; 33(21):3411-7. PubMed ID: 6093811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Underestimation of cyclic 3',5'-nucleotide phosphodiesterase activity by a radioisotopic assay using an anionic-exchange resin.
    Lynch TJ; Cheung WY
    Anal Biochem; 1975 Jul; 67(1):130-8. PubMed ID: 167606
    [No Abstract]   [Full Text] [Related]  

  • 38. Pig aortic endothelial-cell cyclic nucleotide phosphodiesterases. Use of phosphodiesterase inhibitors to evaluate their roles in regulating cyclic nucleotide levels in intact cells.
    Souness JE; Diocee BK; Martin W; Moodie SA
    Biochem J; 1990 Feb; 266(1):127-32. PubMed ID: 2155604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for convertible forms of soluble uterine cyclic nucleotide phosphodiesterase.
    Strada SJ; Epstein PM; Gardner EA; Thompson WJ; Stancel GM
    Biochim Biophys Acta; 1981 Sep; 661(1):12-20. PubMed ID: 6271215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A rapid batch assay for cyclic AMP phosphodiesterase.
    Zusman DR
    Anal Biochem; 1978 Feb; 84(2):551-8. PubMed ID: 204220
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.