These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 21186724)

  • 1. Effects of cyanobacterium Microcystis aeruginosa on the filtration rate and mortality of the freshwater bivalve Corbicula leana.
    Hwang SJ; Kim HS; Park JH; Kim BH
    J Environ Biol; 2010 Jul; 31(4):483-8. PubMed ID: 21186724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shift in nutrient and plankton community in eutrophic lake following introduction of a freshwater bivalve.
    Hwang SJ; Kim HS; Park JH; Kim BH
    J Environ Biol; 2011 Mar; 32(2):227-34. PubMed ID: 21882660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population dynamic of bloom-forming Microcystis aeruginosa in the presence of the invasive bivalve Limnoperna fortunei.
    Silva FAE; Giani A
    Harmful Algae; 2018 Mar; 73():148-156. PubMed ID: 29602503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Response of the Freshwater Mussel
    Li Z; Kim YH; Aldridge DC; Kim BH
    Biomed Res Int; 2022; 2022():2928235. PubMed ID: 35434123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcystin uptake and biochemical responses in the freshwater clam
    Pham TL; Shimizu K; Dao TS; Hong-Do LC; Utsumi M
    Toxicol Rep; 2015; 2():88-98. PubMed ID: 28962341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity thresholds for juvenile freshwater mussels Echyridella menziesii and crayfish Paranephrops planifrons, after acute or chronic exposure to Microcystis sp.
    Clearwater SJ; Wood SA; Phillips NR; Parkyn SM; Van Ginkel R; Thompson KJ
    Environ Toxicol; 2014 May; 29(5):487-502. PubMed ID: 22489020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and depuration of cyanobacterial paralytic shellfish toxins by the freshwater mussel Anodonta cygnea.
    Pereira P; Dias E; Franca S; Pereira E; Carolino M; Vasconcelos V
    Aquat Toxicol; 2004 Jul; 68(4):339-50. PubMed ID: 15177951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeding behavior of the invasive bivalve Limnoperna fortunei (Dunker, 1857) under exposure to toxic cyanobacteria Microcystis aeruginosa.
    Gazulha V; Mansur MC; Cybis LF; Azevedo SM
    Braz J Biol; 2012 Feb; 72(1):41-9. PubMed ID: 22437383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dominance of harmful algae, Microcystis spp. and Micrasterias hardyi, has negative consequences for bivalves in a freshwater lake.
    Fujibayashi M; Furuta S; Inoue E; Ichise S; Takei N
    Harmful Algae; 2021 Jan; 101():101967. PubMed ID: 33526189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha.
    Pires LM; Karlsson KM; Meriluoto JA; Kardinaal E; Visser PM; Siewertsen K; Donk EV; Ibelings BW
    Aquat Toxicol; 2004 Sep; 69(4):385-96. PubMed ID: 15312721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining bivalve (Corbicula fluminea) and filter-feeding fish (Aristichthys nobilis) enhances the bioremediation effect of algae: An outdoor mesocosm study.
    Shen R; Gu X; Chen H; Mao Z; Zeng Q; Jeppesen E
    Sci Total Environ; 2020 Jul; 727():138692. PubMed ID: 32330725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa.
    Horst GP; Sarnelle O; White JD; Hamilton SK; Kaul RB; Bressie JD
    Water Res; 2014 May; 54():188-98. PubMed ID: 24568788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa.
    Zeng J; Yang L; Wang WX
    Aquat Toxicol; 2009 Jun; 93(1):1-10. PubMed ID: 19328562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Composition of Microcystis species of the cyanobacterial bloom in Xuanwu Lake of Nanjing].
    Wang YW; Li JH; Wu M; Wang YY; Weng YP
    Huan Jing Ke Xue; 2007 Oct; 28(10):2187-91. PubMed ID: 18268976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa).
    Pérez-Morales A; Sarma SS; Nandini S
    J Environ Biol; 2014 Nov; 35(6):1013-20. PubMed ID: 25522500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus.
    Tucker S; Pollard P
    Appl Environ Microbiol; 2005 Feb; 71(2):629-35. PubMed ID: 15691911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii.
    Hu M; Wu F; Yuan M; Liu Q; Wang Y
    J Hazard Mater; 2016 Apr; 306():24-33. PubMed ID: 26686521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?
    Chislock MF; Sarnelle O; Jernigan LM; Wilson AE
    Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron uptake by bloom-forming freshwater cyanobacterium Microcystis aeruginosa in natural and effluent waters.
    Fu QL; Fujii M; Natsuike M; Waite TD
    Environ Pollut; 2019 Apr; 247():392-400. PubMed ID: 30690235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.