BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21186811)

  • 1. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization.
    Kim D; Andou Y; Shirai Y; Nishida H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of poly(L-lactide)-co-poly(trimethylene carbonate)/talc film.
    Yang J; Qin Y; Yuan M; Xue J; Cao J; Wu Y; Yuan M
    Int J Biol Macromol; 2013 Nov; 62():411-7. PubMed ID: 24099935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(L-lactic acid) nanocomposites.
    Vasanthan N; Ly H; Ghosh S
    J Phys Chem B; 2011 Aug; 115(31):9556-63. PubMed ID: 21718003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct fluorination applied to wood flour used as a reinforcement for polymers.
    Saulnier F; Dubois M; Charlet K; Frezet L; Beakou A
    Carbohydr Polym; 2013 Apr; 94(1):642-6. PubMed ID: 23544585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique.
    Hamoudeh M; Fessi H; Mehier H; Faraj AA; Canet-Soulas E
    Int J Pharm; 2008 Feb; 348(1-2):125-36. PubMed ID: 17716842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC
    J Phys Chem B; 2011 Sep; 115(38):11029-37. PubMed ID: 21838279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering.
    Zhang Q; Mochalin VN; Neitzel I; Hazeli K; Niu J; Kontsos A; Zhou JG; Lelkes PI; Gogotsi Y
    Biomaterials; 2012 Jul; 33(20):5067-75. PubMed ID: 22494891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of phase diagram of membrane formation system in controlling the crystallinity and degradation rate of PLLA membranes.
    Lee IC; Cheng LP; Young TH
    J Biomed Mater Res A; 2006 Mar; 76(4):842-50. PubMed ID: 16345093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and properties of g-TTCP/PBS nanocomposites and its in vitro biocompatibility assay.
    Fan RR; Zhou LX; Song W; Li de X; Zhang DM; Ye R; Zheng Y; Guo G
    Int J Biol Macromol; 2013 Aug; 59():227-34. PubMed ID: 23624285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance test of Nano-HA/PLLA composites for interface fixation.
    Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(L-cysteine)-block-poly(L-lactide).
    Sun J; Chen X; Lu T; Liu S; Tian H; Guo Z; Jing X
    Langmuir; 2008 Sep; 24(18):10099-106. PubMed ID: 18698858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide.
    Qiu X; Hong Z; Hu J; Chen L; Chen X; Jing X
    Biomacromolecules; 2005; 6(3):1193-9. PubMed ID: 15877333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid).
    Zan X; Kozlov M; McCarthy TJ; Su Z
    Biomacromolecules; 2010 Apr; 11(4):1082-8. PubMed ID: 20307097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation.
    Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK
    Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation.
    Leach KJ; Mathiowitz E
    Biomaterials; 1998 Nov; 19(21):1973-80. PubMed ID: 9863531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-lactic acid) via ring-opening polymerization.
    Lönnberg H; Zhou Q; Brumer H; Teeri TT; Malmström E; Hult A
    Biomacromolecules; 2006 Jul; 7(7):2178-85. PubMed ID: 16827585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization behaviors of poly(3-hydroxybutyrate) and poly(l-lactic acid) in their immiscible and miscible blends.
    Zhang J; Sato H; Furukawa T; Tsuji H; Noda I; Ozaki Y
    J Phys Chem B; 2006 Dec; 110(48):24463-71. PubMed ID: 17134202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation.
    Luo BH; Hsu CE; Li JH; Zhao LF; Liu MX; Wang XY; Zhou CR
    J Biomed Nanotechnol; 2013 Apr; 9(4):649-58. PubMed ID: 23621025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.