These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21186859)

  • 1. Exploiting classical nucleation theory for reverse self-assembly.
    Miller WL; Cacciuto A
    J Chem Phys; 2010 Dec; 133(23):234108. PubMed ID: 21186859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse self-assembly in a model with protein-like interactions.
    Wilber AW; Doye JP; Louis AA; Lewis AC
    J Chem Phys; 2009 Nov; 131(17):175102. PubMed ID: 19895043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation of crystals from solution: classical and two-step models.
    Erdemir D; Lee AY; Myerson AS
    Acc Chem Res; 2009 May; 42(5):621-9. PubMed ID: 19402623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-energy functional method for inverse problem of self assembly.
    Torikai M
    J Chem Phys; 2015 Apr; 142(14):144102. PubMed ID: 25877557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of the simple cubic lattice with an isotropic potential.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021404. PubMed ID: 17025422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach.
    Bai XM; Li M
    J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On one-dimensional self-assembly of surfactant-coated nanoparticles.
    Wang JC; Neogi P; Forciniti D
    J Chem Phys; 2006 Nov; 125(19):194717. PubMed ID: 17129160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly protocol design for periodic multicomponent structures.
    Jacobs WM; Frenkel D
    Soft Matter; 2015 Dec; 11(46):8930-8. PubMed ID: 26404794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonclassical assembly pathways of anisotropic particles.
    Whitelam S
    J Chem Phys; 2010 May; 132(19):194901. PubMed ID: 20499986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of the ZrZn22 family: suprapolyhedral nanoclusters, methods of self-assembly and superstructural ordering.
    Ilyushin GD; Blatov VA
    Acta Crystallogr B; 2009 Jun; 65(Pt 3):300-7. PubMed ID: 19461139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal nucleation in the hard-sphere system revisited: a critical test of theoretical approaches.
    Tóth GI; Gránásy L
    J Phys Chem B; 2009 Apr; 113(15):5141-8. PubMed ID: 19320450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of free-standing colloidal-crystal films by interfacial self-assembly.
    Zhang J; Wang M; Ge X; Wu M; Wu Q; Yang J; Wang M; Jin Z; Liu N
    J Colloid Interface Sci; 2011 Jan; 353(1):16-21. PubMed ID: 20926095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling crystal symmetries in phase-field crystal models.
    Wu KA; Plapp M; Voorhees PW
    J Phys Condens Matter; 2010 Sep; 22(36):364102. PubMed ID: 21386518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossover model for the work of critical cluster formation in nucleation theory.
    Kalikmanov VI
    J Chem Phys; 2004 Nov; 121(18):8916-23. PubMed ID: 15527357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible self-assembly of patchy particles into monodisperse icosahedral clusters.
    Wilber AW; Doye JP; Louis AA; Noya EG; Miller MA; Wong P
    J Chem Phys; 2007 Aug; 127(8):085106. PubMed ID: 17764305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially controlled reversible colloidal self-assembly.
    Fernandes GE; Beltran-Villegas DJ; Bevan MA
    J Chem Phys; 2009 Oct; 131(13):134705. PubMed ID: 19814568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.