These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21186898)

  • 61. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels.
    McHale NG; Roddie IC
    J Physiol; 1976 Oct; 261(2):255-69. PubMed ID: 988184
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Is endothelium necessary for transmural pressure-induced contractions of bovine truncal lymphatics?
    Hanley CA; Elias RM; Johnston MG
    Microvasc Res; 1992 Mar; 43(2):134-46. PubMed ID: 1584057
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lymphatic Valves Separate Lymph Flow Into a Central Stream and a Slow-Moving Peri-Valvular Milieu.
    Pujari A; Smith AF; Hall JD; Mei P; Chau K; Nguyen DT; Sweet DT; Jiménez JM
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32766737
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Self-regulation of the pump function of the lymphangion].
    Lobov GI; Orlov RS
    Fiziol Zh SSSR Im I M Sechenova; 1988 Jul; 74(7):977-86. PubMed ID: 3181540
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modulation of fluid pumping in isolated bovine mesenteric lymphatics by a thromboxane/endoperoxide analogue.
    Elias RM; Johnston MG
    Prostaglandins; 1988 Jul; 36(1):97-106. PubMed ID: 3175026
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An Enhanced 3D Model of Intravascular Lymphatic Valves to Assess Leaflet Apposition and Transvalvular Differences in Wall Distensibility.
    Bertram CD; Davis MJ
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979071
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves.
    Zhang R; You F; Lv Z; He Z; Wang H; Huang L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973449
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(1):H60-70. PubMed ID: 26519032
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema.
    Caulk AW; Dixon JB; Gleason RL
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1601-1618. PubMed ID: 27043026
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lymphatic Vessel Pumping.
    von der Weid PY
    Adv Exp Med Biol; 2019; 1124():357-377. PubMed ID: 31183835
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic valvular chips and a numerical lymphatic vessel model for the study of lymph transport characteristics.
    In J; Ryu J; Yu H; Kang D; Kim T; Kim J
    Lab Chip; 2021 Jun; 21(11):2283-2293. PubMed ID: 33942040
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimation of the Pressure Drop Required for Lymph Flow through Initial Lymphatic Networks.
    Sloas DC; Stewart SA; Sweat RS; Doggett TM; Alves NG; Breslin JW; Gaver DP; Murfee WL
    Lymphat Res Biol; 2016 Jun; 14(2):62-9. PubMed ID: 27267167
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inhibition of active lymph pump by simulated microgravity in rats.
    Gashev AA; Delp MD; Zawieja DC
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2295-308. PubMed ID: 16399874
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of valve spacing on peristaltic pumping.
    Wolf KT; Poorghani A; Dixon JB; Alexeev A
    Bioinspir Biomim; 2023 Mar; 18(3):. PubMed ID: 36821859
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A model of a radially expanding and contracting lymphangion.
    Rahbar E; Moore JE
    J Biomech; 2011 Apr; 44(6):1001-7. PubMed ID: 21377158
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A 1D model characterizing the role of spatiotemporal contraction distributions on lymph transport.
    Sedaghati F; Dixon JB; Gleason RL
    Sci Rep; 2023 Dec; 13(1):21241. PubMed ID: 38040740
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inhibition of Contraction Strength and Frequency by Wall Shear Stress in a Single-Lymphangion Model.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2019 Nov; 141(11):1110061-8. PubMed ID: 31074761
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A fully coupled fluid-structure interaction model of the secondary lymphatic valve.
    Wilson JT; Edgar LT; Prabhakar S; Horner M; van Loon R; Moore JE
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):813-823. PubMed ID: 30398077
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation.
    Razavi MS; Dixon JB; Gleason RL
    J R Soc Interface; 2020 Sep; 17(170):20200598. PubMed ID: 32993429
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Integrated geometric and mechanical analysis of an image-based lymphatic valve.
    Watson DJ; Sazonov I; Zawieja DC; Moore JE; van Loon R
    J Biomech; 2017 Nov; 64():172-179. PubMed ID: 29061390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.