These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21186902)

  • 1. Pure passive hyperextension of the human cadaver knee generates simultaneous bicruciate ligament rupture.
    Meyer EG; Baumer TG; Haut RC
    J Biomech Eng; 2011 Jan; 133(1):011012. PubMed ID: 21186902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee.
    Meyer EG; Baumer TG; Slade JM; Smith WE; Haut RC
    Am J Sports Med; 2008 Oct; 36(10):1966-77. PubMed ID: 18490469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental capsulo-ligamentar lesions of the knee during passive hyperextension. Biomechanical aspects. A lesional evaluation and consequences].
    Bizot P; Meunier A; Christel P; Witvoët J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(3):211-20. PubMed ID: 7501879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
    Liu-Barba D; Hull ML; Howell SM
    J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Interaction of the Cruciate Ligaments, Posteromedial and Posterolateral Capsule, Oblique Popliteal Ligament, and Other Structures in Preventing Abnormal Knee Hyperextension.
    Noyes FR; Clark O; Nolan J; Johnson DJ
    Am J Sports Med; 2023 Apr; 51(5):1146-1154. PubMed ID: 36815786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excessive compression of the human tibio-femoral joint causes ACL rupture.
    Meyer EG; Haut RC
    J Biomech; 2005 Nov; 38(11):2311-6. PubMed ID: 16154419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of tibial torque and knee flexion angle: implications for understanding knee injury.
    Senter C; Hame SL
    Sports Med; 2006; 36(8):635-41. PubMed ID: 16869706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cruciate injury patterns in knee hyperextension: a cadaveric model.
    Schenck RC; Kovach IS; Agarwal A; Brummett R; Ward RA; Lanctot D; Athanasiou KA
    Arthroscopy; 1999; 15(5):489-95. PubMed ID: 10424552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
    Bose D; Bhalla KS; Untaroiu CD; Ivarsson BJ; Crandall JR; Hurwitz S
    J Biomech Eng; 2008 Jun; 130(3):031008. PubMed ID: 18532857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scarring of the anterior cruciate ligament to the posterior cruciate ligament does not decrease anterior translation.
    Wright RW; Parry SA
    Am J Knee Surg; 1997; 10(3):125-8. PubMed ID: 9280106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression.
    Meyer EG; Haut RC
    J Biomech; 2008 Dec; 41(16):3377-83. PubMed ID: 19007932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sectioning the posterolateral structures on knee kinematics and in situ forces in the posterior cruciate ligament.
    Vogrin TM; Höher J; Arøen A; Woo SL; Harner CD
    Knee Surg Sports Traumatol Arthrosc; 2000; 8(2):93-8. PubMed ID: 10795671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.
    Giffin JR; Stabile KJ; Zantop T; Vogrin TM; Woo SL; Harner CD
    Am J Sports Med; 2007 Sep; 35(9):1443-9. PubMed ID: 17641101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteochondral microdamage from valgus bending of the human knee.
    Meyer EG; Villwock MR; Haut RC
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):577-82. PubMed ID: 19505750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anterior cruciate ligament rupture translates the axes of motion within the knee.
    Mannel H; Marin F; Claes L; Dürselen L
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):130-5. PubMed ID: 14967575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sagittal alignment of the knee and its relationship to noncontact anterior cruciate ligament injuries.
    Terauchi M; Hatayama K; Yanagisawa S; Saito K; Takagishi K
    Am J Sports Med; 2011 May; 39(5):1090-4. PubMed ID: 21285443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injuries to the posterior cruciate ligament of the knee.
    Kannus P; Bergfeld J; Järvinen M; Johnson RJ; Pope M; Renström P; Yasuda K
    Sports Med; 1991 Aug; 12(2):110-31. PubMed ID: 1947532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture.
    Jonsson H; Kärrholm J
    J Orthop Res; 1994 Nov; 12(6):769-79. PubMed ID: 7983552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the oblique popliteal ligament and other structures in preventing knee hyperextension.
    Morgan PM; LaPrade RF; Wentorf FA; Cook JW; Bianco A
    Am J Sports Med; 2010 Mar; 38(3):550-7. PubMed ID: 20097929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion.
    Wünschel M; Müller O; Lo J; Obloh C; Wülker N
    Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.