BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21187101)

  • 1. TWIG: a model to simulate the gravitropic response of a tree axis in the frame of elasticity and viscoelasticity, at intra-annual time scale.
    Coutand C; Mathias JD; Jeronimidis G; Destrebecq JF
    J Theor Biol; 2011 Mar; 273(1):115-29. PubMed ID: 21187101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction.
    Alméras T; Fournier M
    J Theor Biol; 2009 Feb; 256(3):370-81. PubMed ID: 19013473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation.
    Coutand C; Fournier M; Moulia B
    Plant Physiol; 2007 Jun; 144(2):1166-80. PubMed ID: 17468227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model.
    Dassot M; Fournier M; Ningre F; Constant T
    Am J Bot; 2012 Sep; 99(9):1427-35. PubMed ID: 22922395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth stress controls negative gravitropism in woody plant stems.
    Yamamoto H; Yoshida M; Okuyama T
    Planta; 2002 Dec; 216(2):280-92. PubMed ID: 12447542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative biomechanics for tree ecology: beyond wood density and strength.
    Fournier M; Dlouhá J; Jaouen G; Almeras T
    J Exp Bot; 2013 Nov; 64(15):4793-815. PubMed ID: 24014867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling polymer interactions of the 'molecular Velcro' type in wood under mechanical stress.
    Altaner CM; Jarvis MC
    J Theor Biol; 2008 Aug; 253(3):434-45. PubMed ID: 18485371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graviresponses in herb and trees: a major role for the redistribution of tissue and growth stresses.
    Hejnowicz Z
    Planta; 1997 Sep; 203(Suppl 1):S136-46. PubMed ID: 11540322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways.
    Pitre FE; Lafarguette F; Boyle B; Pavy N; Caron S; Dallaire N; Poulin PL; Ouellet M; Morency MJ; Wiebe N; Ly Lim E; Urbain A; Mouille G; Cooke JE; Mackay JJ
    Tree Physiol; 2010 Oct; 30(10):1273-89. PubMed ID: 20739427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared spectroscopic study of the physical and mechanical properties of wood with meso- and micro-scale anatomical observation.
    Tsuchikawa S; Hirashima Y; Sasaki Y; Ando K
    Appl Spectrosc; 2005 Jan; 59(1):86-93. PubMed ID: 15720742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.
    Hellgren JM; Olofsson K; Sundberg B
    Plant Physiol; 2004 May; 135(1):212-20. PubMed ID: 15122024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-annual cambial activity and carbon availability in stem of poplar.
    Deslauriers A; Giovannelli A; Rossi S; Castro G; Fragnelli G; Traversi L
    Tree Physiol; 2009 Oct; 29(10):1223-35. PubMed ID: 19696052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravitropisms and reaction woods of forest trees - evolution, functions and mechanisms.
    Groover A
    New Phytol; 2016 Aug; 211(3):790-802. PubMed ID: 27111862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent physiological processes in trees.
    Lautner S; Fromm J
    Plant Biol (Stuttg); 2010 Mar; 12(2):268-74. PubMed ID: 20398234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain.
    Fernandez I; González-Prieto SJ; Cabaneiro A
    Rapid Commun Mass Spectrom; 2005; 19(22):3199-206. PubMed ID: 16208761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism.
    Zweifel R; Zimmermann L; Zeugin F; Newbery DM
    J Exp Bot; 2006; 57(6):1445-59. PubMed ID: 16556628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of auxin transport affected by gravity and differential radial growth.
    Forest L; Padilla F; Martínez S; Demongeot J; San Martín J
    J Theor Biol; 2006 Jul; 241(2):241-51. PubMed ID: 16403534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for the quantification of phototropic and gravitropic sensitivities of plants combining an original experimental device with model-assisted phenotyping: Exploratory test of the method on three hardwood tree species.
    Coutand C; Adam B; Ploquin S; Moulia B
    PLoS One; 2019; 14(1):e0209973. PubMed ID: 30682051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological model of softwood cambial growth.
    Hölttä T; Mäkinen H; Nöjd P; Mäkelä A; Nikinmaa E
    Tree Physiol; 2010 Oct; 30(10):1235-52. PubMed ID: 20660493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.