BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 21187403)

  • 1. Arc-dependent synapse-specific homeostatic plasticity.
    Béïque JC; Na Y; Kuhl D; Worley PF; Huganir RL
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):816-21. PubMed ID: 21187403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors.
    Shepherd JD; Rumbaugh G; Wu J; Chowdhury S; Plath N; Kuhl D; Huganir RL; Worley PF
    Neuron; 2006 Nov; 52(3):475-84. PubMed ID: 17088213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.
    Gao M; Sossa K; Song L; Errington L; Cummings L; Hwang H; Kuhl D; Worley P; Lee HK
    J Neurosci; 2010 May; 30(21):7168-78. PubMed ID: 20505084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPAR trafficking in synapse maturation and plasticity.
    Bassani S; Folci A; Zapata J; Passafaro M
    Cell Mol Life Sci; 2013 Dec; 70(23):4411-30. PubMed ID: 23475111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-scaling regulation of AMPA receptors in homeostatic synaptic plasticity.
    Wang G; Zhong J; Guttieres D; Man HY
    Neuropharmacology; 2019 Nov; 158():107700. PubMed ID: 31283924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades.
    Wang G; Gilbert J; Man HY
    Neural Plast; 2012; 2012():825364. PubMed ID: 22655210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic expression of homeostatic plasticity at neocortical synapses.
    Wierenga CJ; Ibata K; Turrigiano GG
    J Neurosci; 2005 Mar; 25(11):2895-905. PubMed ID: 15772349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity.
    Dubes S; Soula A; Benquet S; Tessier B; Poujol C; Favereaux A; Thoumine O; Letellier M
    EMBO J; 2022 Oct; 41(20):e109012. PubMed ID: 35875872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of homeostatic plasticity in the excitatory synapse.
    Fernandes D; Carvalho AL
    J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling mechanisms of homeostatic synaptic plasticity.
    Pozo K; Goda Y
    Neuron; 2010 May; 66(3):337-51. PubMed ID: 20471348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures.
    Buckby LE; Jensen TP; Smith PJ; Empson RM
    Mol Cell Neurosci; 2006 Apr; 31(4):805-16. PubMed ID: 16500111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice.
    Andrásfalvy BK; Smith MA; Borchardt T; Sprengel R; Magee JC
    J Physiol; 2003 Oct; 552(Pt 1):35-45. PubMed ID: 12878757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex.
    Zhong LR; Chen X; Park E; Südhof TC; Chen L
    J Neurosci; 2018 Dec; 38(49):10454-10466. PubMed ID: 30355624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures.
    Hanes AL; Koesters AG; Fong MF; Altimimi HF; Stellwagen D; Wenner P; Engisch KL
    J Neurosci; 2020 May; 40(21):4090-4102. PubMed ID: 32312887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks.
    Qiao N; Bartolozzi C; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1271-1277. PubMed ID: 29293423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid.
    Soden ME; Chen L
    J Neurosci; 2010 Dec; 30(50):16910-21. PubMed ID: 21159962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity.
    Diering GH; Gustina AS; Huganir RL
    Neuron; 2014 Nov; 84(4):790-805. PubMed ID: 25451194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.