BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 2118752)

  • 1. Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775.
    Snoep JL; Teixeira de Mattos MJ; Postma PW; Neijssel OM
    Arch Microbiol; 1990; 154(1):50-5. PubMed ID: 2118752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ ratios.
    Snoep JL; de Graef MR; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1992 Oct; 138(10):2015-20. PubMed ID: 1479339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex.
    Snoep JL; van Bommel M; Lubbers F; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1325-9. PubMed ID: 8360624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775.
    Snoep JL; Westphal AH; Benen JA; Teixeira de Mattos MJ; Neijssel OM; de Kok A
    Eur J Biochem; 1992 Jan; 203(1-2):245-50. PubMed ID: 1730230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo.
    Snoep JL; de Graef MR; Westphal AH; de Kok A; Teixeira de Mattos MJ; Neijssel OM
    FEMS Microbiol Lett; 1993 Dec; 114(3):279-83. PubMed ID: 8288104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli.
    de Graef MR; Alexeeva S; Snoep JL; Teixeira de Mattos MJ
    J Bacteriol; 1999 Apr; 181(8):2351-7. PubMed ID: 10197995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of culture conditions on the NADH/NAD ratio and total amounts of NAD(H) in chemostat cultures of Enterococcus faecalis NCTC 775.
    Snoep JL; de Graef MR; Teixeira de Mattos MJ; Neijssel OM
    FEMS Microbiol Lett; 1994 Mar; 116(3):263-7. PubMed ID: 8181697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetic mechanism of pyruvate reduction by lactate dehydrogenase from Phycomyces blakesleeanus.
    Busto F; de Arriaga D; Soler J
    Int J Biochem; 1984; 16(2):171-6. PubMed ID: 6705969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate formate-lyase is essential for fumarate-independent anaerobic glycerol utilization in the Enterococcus faecalis strain W11.
    Doi Y; Ikegami Y
    J Bacteriol; 2014 Jul; 196(13):2472-80. PubMed ID: 24769696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
    Wang Q; Ou MS; Kim Y; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2010 Apr; 76(7):2107-14. PubMed ID: 20118372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions.
    Abbe K; Takahashi S; Yamada T
    J Bacteriol; 1982 Oct; 152(1):175-82. PubMed ID: 6811549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose and lactate metabolism by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements.
    Henriksen CM; Nilsson D
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):767-75. PubMed ID: 11601628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate fermentation in light-grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark conditions.
    Voelskow H; Schön G
    Arch Microbiol; 1978 Nov; 119(2):129-33. PubMed ID: 103509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness.
    Gorrell TE; Uffen RL
    J Bacteriol; 1977 Aug; 131(2):533-43. PubMed ID: 18439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism.
    Menzel K; Ahrens K; Zeng A; Deckwer W
    Biotechnol Bioeng; 1998 Dec; 60(5):617-26. PubMed ID: 10099470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of pyruvate metabolism in Lactococcus lactis.
    Melchiorsen CR; Jensen NB; Christensen B; Vaever Jokumsen K; Villadsen J
    Biotechnol Bioeng; 2001 Aug; 74(4):271-9. PubMed ID: 11410851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic and aerobic metabolism of sorbitol in Streptococcus sanguis and Streptococcus mitior.
    Svensäter G; Takahashi-Abbe S; Abbe K; Birkhed D; Yamada T; Edwardsson S
    J Dent Res; 1985 Nov; 64(11):1286-9. PubMed ID: 3867686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purificationa and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis.
    Wittenberger CL; Angelo N
    J Bacteriol; 1970 Mar; 101(3):717-24. PubMed ID: 4314543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.