These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 2118755)
1. The effect of perivascular denervation on endothelium-dependent relaxation to acetylcholine. Miller ME; Scott TM Artery; 1990; 17(5):233-47. PubMed ID: 2118755 [TBL] [Abstract][Full Text] [Related]
2. Peptidergic nerve involvement in the control of endothelium-dependent vascular relaxation. Scott TM; Drodge KH; Foote J Artery; 1992; 19(4):211-24. PubMed ID: 1520074 [TBL] [Abstract][Full Text] [Related]
3. Proton acts as a neurotransmitter for nicotine-induced adrenergic and calcitonin gene-related peptide-containing nerve-mediated vasodilation in the rat mesenteric artery. Kawasaki H; Eguchi S; Miyashita S; Chan S; Hirai K; Hobara N; Yokomizo A; Fujiwara H; Zamami Y; Koyama T; Jin X; Kitamura Y J Pharmacol Exp Ther; 2009 Sep; 330(3):745-55. PubMed ID: 19483072 [TBL] [Abstract][Full Text] [Related]
4. Endothelium-dependent sensory NANC vasodilatation: involvement of ATP, CGRP and a possible NO store. Kakuyama M; Vallance P; Ahluwalia A Br J Pharmacol; 1998 Jan; 123(2):310-6. PubMed ID: 9489620 [TBL] [Abstract][Full Text] [Related]
5. The involvement of CGRP in acetylcholine-induced vascular relaxation. Scott TM; Chafe L Artery; 1994; 21(1):38-50. PubMed ID: 7980030 [TBL] [Abstract][Full Text] [Related]
6. The involvement of perivascular innervation in acetylcholine-induced endothelium-dependent vascular relaxation in the rat superior mesenteric arterial bed. Scott TM; Chafe L Artery; 1994; 21(1):51-62. PubMed ID: 7980031 [TBL] [Abstract][Full Text] [Related]
7. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y; Ku DD; Man RY; Vanhoutte PM J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165 [TBL] [Abstract][Full Text] [Related]
8. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
9. Role of nitric oxide and prostaglandin systems in lithium modulation of acetylcholine vasodilation. Rahimzadeh-Rofouyi B; Afsharimani B; Moezi L; Ebrahimi F; Mehr SE; Mombeini T; Ghahremani MH; Dehpour AR J Cardiovasc Pharmacol; 2007 Dec; 50(6):641-6. PubMed ID: 18091580 [TBL] [Abstract][Full Text] [Related]
10. Involvement of CGRP in the control of acetylcholine-induced endothelium-dependent vascular relaxation. Scott TM; Drodge KH Ann N Y Acad Sci; 1992 Jun; 657():516. PubMed ID: 1379024 [No Abstract] [Full Text] [Related]
11. The interaction between catecholaminergic and peptidergic perivascular nerve fibres in the innervation of the rat mesenteric vascular bed. Woolgar JR; Scott TM Artery; 1989; 16(4):223-32. PubMed ID: 2500926 [TBL] [Abstract][Full Text] [Related]
12. Involvement of perivascular nerves and transient receptor potential vanilloid 1 (TRPV1) in vascular responses to histamine in rat mesenteric resistance arteries. Jin H; Sun P; Takatori S; Koyama T; Zamami Y; Tangsucharit P; Kitamura Y; Kawasaki H Eur J Pharmacol; 2012 Apr; 680(1-3):73-80. PubMed ID: 22314222 [TBL] [Abstract][Full Text] [Related]
13. Calcitonin gene-related peptide mediates acetylcholine-induced endothelium-independent vasodilation in mesenteric resistance blood vessels of the rat. Takenaga M; Kawasaki H; Wada A; Eto T Circ Res; 1995 Jun; 76(6):935-41. PubMed ID: 7758164 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080 [TBL] [Abstract][Full Text] [Related]
15. Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries. Lacy PS; Pilkington G; Hanvesakul R; Fish HJ; Boyle JP; Thurston H Br J Pharmacol; 2000 Feb; 129(3):605-11. PubMed ID: 10711361 [TBL] [Abstract][Full Text] [Related]
16. Long-term sensory denervation does not modify endothelial function or endothelial substance P and nitric oxide synthase in rat mesenteric arteries. Ralevic V; Dikranian K; Burnstock G J Vasc Res; 1995; 32(5):320-7. PubMed ID: 7578800 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. Lagaud GJ; Skarsgard PL; Laher I; van Breemen C J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599 [TBL] [Abstract][Full Text] [Related]
18. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. Adeagbo AS; Triggle CR J Cardiovasc Pharmacol; 1993 Mar; 21(3):423-9. PubMed ID: 7681503 [TBL] [Abstract][Full Text] [Related]
19. [Endothelium-dependent relaxation response to cyclopiazonic acid in rat mesenteric arterial bed]. Umeda F; Suenaga H; Kasuya Y; Kamata K J Smooth Muscle Res; 1995 Dec; 31(6):443-6. PubMed ID: 8867965 [No Abstract] [Full Text] [Related]
20. Heat stress alters G-protein coupled receptor-mediated function and endothelium-dependent relaxation in rat mesenteric artery. Li J; Cao YX; Cao L; Liu Y; Xu CB Eur J Pharmacol; 2008 Jul; 588(2-3):280-5. PubMed ID: 18511037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]