BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21187642)

  • 41. Characterization of a Corynebacterium glutamicum dnaB mutant that shows temperature-sensitive growth and mini-cell formation.
    Uchida M; Hirasawa T; Wachi M
    Arch Microbiol; 2014 Dec; 196(12):871-9. PubMed ID: 25141796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. L-Cysteine production by metabolically engineered Corynebacterium glutamicum.
    Kondoh M; Hirasawa T
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2609-2619. PubMed ID: 30729285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioprocess engineering to produce 9-(nonanoyloxy) nonanoic acid by a recombinant Corynebacterium glutamicum-based biocatalyst.
    Kim H; Park S; Cho S; Yang J; Jeong K; Park J; Lee J
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1301-1311. PubMed ID: 28567672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative proteomic overview on the Corynebacterium glutamicuml-lysine producing strain DM1730.
    Fränzel B; Poetsch A; Trötschel C; Persicke M; Kalinowski J; Wolters DA
    J Proteomics; 2010 Nov; 73(12):2336-53. PubMed ID: 20650338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced l-ornithine production by systematic manipulation of l-ornithine metabolism in engineered Corynebacterium glutamicum S9114.
    Zhang B; Ren LQ; Yu M; Zhou Y; Ye BC
    Bioresour Technol; 2018 Feb; 250():60-68. PubMed ID: 29153651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse.
    Lee JY; Na YA; Kim E; Lee HS; Kim P
    J Microbiol Biotechnol; 2016 May; 26(5):807-22. PubMed ID: 26838341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase.
    Kim DJ; Hwang GH; Um JN; Cho JY
    J Mol Microbiol Biotechnol; 2015; 25(1):45-50. PubMed ID: 25720798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.
    Gui Y; Ma Y; Xu Q; Zhang C; Xie X; Chen N
    J Biotechnol; 2016 Feb; 220():64-5. PubMed ID: 26784991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering Corynebacterium glutamicum Mutants for 3-Methyl-1-butanol Production.
    Zhang Y; Zhang X; Xiao S; Qi W; Xu J; Yuan Z; Wang Z
    Biochem Genet; 2019 Jun; 57(3):443-454. PubMed ID: 30644007
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum.
    Sawada K; Kato Y; Imai K; Li L; Wada M; Matsushita K; Yokota A
    J Biosci Bioeng; 2012 Apr; 113(4):467-73. PubMed ID: 22188772
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production.
    Kabus A; Niebisch A; Bott M
    Appl Environ Microbiol; 2007 Feb; 73(3):861-8. PubMed ID: 17142369
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum.
    Letek M; Fiuza M; Ordóñez E; Villadangos AF; Ramos A; Mateos LM; Gil JA
    Antonie Van Leeuwenhoek; 2008 Jun; 94(1):99-109. PubMed ID: 18283557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
    Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK
    FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
    Blombach B; Buchholz J; Busche T; Kalinowski J; Takors R
    J Biotechnol; 2013 Dec; 168(4):331-40. PubMed ID: 24140290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation.
    Koch-Koerfges A; Kabus A; Ochrombel I; Marin K; Bott M
    Biochim Biophys Acta; 2012 Feb; 1817(2):370-80. PubMed ID: 22050934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum.
    Aoki R; Wada M; Takesue N; Tanaka K; Yokota A
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1466-72. PubMed ID: 16116273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 59. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
    Mimitsuka T; Sawai H; Hatsu M; Yamada K
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2130-5. PubMed ID: 17895539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.