BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21187642)

  • 61. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F; Zhang M; Li Y
    World J Microbiol Biotechnol; 2017 Jun; 33(6):122. PubMed ID: 28534111
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparisons of potentials for L-lysine production among different Corynebacterium glutamicum strains.
    Ohnishi J; Ikeda M
    Biosci Biotechnol Biochem; 2006 Apr; 70(4):1017-20. PubMed ID: 16636474
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Vanillate metabolism in Corynebacterium glutamicum.
    Merkens H; Beckers G; Wirtz A; Burkovski A
    Curr Microbiol; 2005 Jul; 51(1):59-65. PubMed ID: 15971090
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869.
    Kikuchi Y; Date M; Itaya H; Matsui K; Wu LF
    Appl Environ Microbiol; 2006 Nov; 72(11):7183-92. PubMed ID: 16997984
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biotransformation of oleic acid into 10-ketostearic acid by recombinant Corynebacterium glutamicum-based biocatalyst.
    Lee B; Lee S; Kim H; Jeong K; Park J; Lee E; Lee J
    Biotechnol Lett; 2015 May; 37(5):1101-6. PubMed ID: 25700814
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Purification and structure analysis of mycolic acids in Corynebacterium glutamicum.
    Yang Y; Shi F; Tao G; Wang X
    J Microbiol; 2012 Apr; 50(2):235-40. PubMed ID: 22538651
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032.
    Brune I; Götker S; Schneider J; Rodionov DA; Tauch A
    J Biotechnol; 2012 Jun; 159(3):225-34. PubMed ID: 22178235
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum.
    Wang X
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies.
    Li L; Wada M; Yokota A
    Proteomics; 2007 Sep; 7(18):3348-57. PubMed ID: 17849411
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869.
    Gao Y; Hu X; Wang J; Li H; Wang X
    Biotechnol Appl Biochem; 2018 May; 65(3):435-445. PubMed ID: 29072327
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phytate utilization by genetically engineered lysine-producing Corynebacterium glutamicum.
    Tzvetkov MV; Liebl W
    J Biotechnol; 2008 Apr; 134(3-4):211-7. PubMed ID: 18374441
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
    Peters-Wendisch P; Götker S; Heider SA; Komati Reddy G; Nguyen AQ; Stansen KC; Wendisch VF
    J Biotechnol; 2014 Dec; 192 Pt B():346-54. PubMed ID: 24486440
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant.
    Hasegawa S; Tanaka Y; Suda M; Jojima T; Inui M
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27881414
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum.
    Jo SJ; Maeda M; Ooi T; Taguchi S
    J Biosci Bioeng; 2006 Sep; 102(3):233-6. PubMed ID: 17046539
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum.
    Zhang Q; Zheng X; Wang Y; Yu J; Zhang Z; Dele-Osibanjo T; Zheng P; Sun J; Jia S; Ma Y
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):7113-7121. PubMed ID: 29876603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.