BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21187977)

  • 1. Insertion sequence inversions mediated by ectopic recombination between terminal inverted repeats.
    Ling A; Cordaux R
    PLoS One; 2010 Dec; 5(12):e15654. PubMed ID: 21187977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.
    Gonçalves JW; Valiati VH; Delprat A; Valente VL; Ruiz A
    BMC Genomics; 2014 Sep; 15(1):792. PubMed ID: 25218200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination.
    Delprat A; Negre B; Puig M; Ruiz A
    PLoS One; 2009 Nov; 4(11):e7883. PubMed ID: 19936241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homologous recombination between the inverted terminal repeats of defective transposon TCp3.2 causes an inversion in the genome of Cydia pomonella granulovirus.
    Arends HM; Jehle JA
    J Gen Virol; 2002 Jul; 83(Pt 7):1573-1578. PubMed ID: 12075075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent evolution of transposase and TIRs facilitated by recombination between
    Hunter CT; McCarty DR; Koch KE
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2305298120. PubMed ID: 37490540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula.
    Grzebelus D; Lasota S; Gambin T; Kucherov G; Gambin A
    BMC Genomics; 2007 Nov; 8():409. PubMed ID: 17996080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons.
    Moschetti R; Chlamydas S; Marsano RM; Caizzi R
    Mol Genet Genomics; 2008 May; 279(5):451-61. PubMed ID: 18247055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New transposable elements identified as insertions in rice transposon Tnr1.
    Han CG; Frank MJ; Ohtsubo H; Ohtsubo E
    Genes Genet Syst; 2000 Apr; 75(2):69-77. PubMed ID: 10925785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome.
    Liu S; Yeh CT; Ji T; Ying K; Wu H; Tang HM; Fu Y; Nettleton D; Schnable PS
    PLoS Genet; 2009 Nov; 5(11):e1000733. PubMed ID: 19936291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of a widespread Drosophila inversion by a transposable element.
    Cáceres M; Ranz JM; Barbadilla A; Long M; Ruiz A
    Science; 1999 Jul; 285(5426):415-8. PubMed ID: 10411506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily.
    DeMarco R; Venancio TM; Verjovski-Almeida S
    BMC Evol Biol; 2006 Nov; 6():89. PubMed ID: 17090310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal arm replacement generates a high level of intraspecific polymorphism in the terminal inverted repeats of the linear chromosomal DNA of Streptomyces ambofaciens.
    Fischer G; Wenner T; Decaris B; Leblond P
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14296-301. PubMed ID: 9826694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome plasticity in Streptomyces: identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome.
    Weaver D; Karoonuthaisiri N; Tsai HH; Huang CH; Ho ML; Gai S; Patel KG; Huang J; Cohen SN; Hopwood DA; Chen CW; Kao CM
    Mol Microbiol; 2004 Mar; 51(6):1535-50. PubMed ID: 15009883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti.
    Tu Z
    Mol Biol Evol; 2000 Sep; 17(9):1313-25. PubMed ID: 10958848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of small repeat sequences on bacterial genome evolution.
    Delihas N
    Genome Biol Evol; 2011; 3():959-73. PubMed ID: 21803768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverted DNA repeats: a source of eukaryotic genomic instability.
    Gordenin DA; Lobachev KS; Degtyareva NP; Malkova AL; Perkins E; Resnick MA
    Mol Cell Biol; 1993 Sep; 13(9):5315-22. PubMed ID: 8395002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.
    Sun C; Feschotte C; Wu Z; Mueller RL
    BMC Biol; 2015 Jun; 13():38. PubMed ID: 26067596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.
    Marzo M; Bello X; Puig M; Maside X; Ruiz A
    Mob DNA; 2013 Feb; 4(1):6. PubMed ID: 23374229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequence analysis of a Drosophila foldback transposable element rearrangement.
    Potter SS
    Mol Gen Genet; 1982; 188(1):107-10. PubMed ID: 6294476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity.
    Hedges DJ; Deininger PL
    Mutat Res; 2007 Mar; 616(1-2):46-59. PubMed ID: 17157332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.