These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2118807)

  • 41. Nigericin-mediated H+, K+ and Na+ transports across vesicular membrane: T-jump studies.
    Prabhananda BS; Ugrankar MM
    Biochim Biophys Acta; 1991 Dec; 1070(2):481-91. PubMed ID: 1764460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cation exchanges of yeast in the absence of magnesium.
    Rodríguez-Navarro A; Sancho ED
    Biochim Biophys Acta; 1979 Apr; 552(2):322-30. PubMed ID: 36142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionophore-mediated loading of Ca2+ into large unilamellar vesicles in response to transmembrane pH gradients.
    Wheeler JJ; Veiro JA; Cullis PR
    Mol Membr Biol; 1994; 11(3):151-7. PubMed ID: 7742879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of the alkyl chain length of monocarboxylic acid on the permeation through bilayer lipid membranes.
    Evtodienko VY; Kovbasnjuk ON; Antonenko YN; Yaguzhinsky LS
    Biochim Biophys Acta; 1996 Jun; 1281(2):245-51. PubMed ID: 8664324
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of Na+-Ca2+ exchange and Ca2+ permeability in cardiac sarcolemmal vesicles by doxylstearic acids.
    Philipson KD; Ward R
    Biochim Biophys Acta; 1987 Feb; 897(1):152-8. PubMed ID: 3099842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [The effect of the composition of phospholipid bilayer membranes on the steady state kinetic transfer of protons].
    Antonenko IuN; Kovbasniuk ON; Iaguzhinskiĭ LS
    Biokhimiia; 1993 Jul; 58(7):987-96. PubMed ID: 8364128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel method for the efficient entrapment of calcium in large unilamellar phospholipid vesicles.
    Veiro JA; Cullis PR
    Biochim Biophys Acta; 1990 Jun; 1025(1):109-15. PubMed ID: 2114930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The effect of holotoxin A1 on transport of calcium ions across the lipid models of biological membranes].
    Aminin DL; Lebedev AV; Levitskiĭ DO
    Biokhimiia; 1990 Feb; 55(2):270-5. PubMed ID: 2160291
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Induction of respiration-dependent net efflux of K+ from heart mitochondria by depletion of endogenous divalent cations.
    Shi GY; Jung DW; Garlid KD; Brierley GP
    J Biol Chem; 1980 Nov; 255(21):10306-11. PubMed ID: 6776113
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of the calcium ionophore A23187 on pancreatic acinar cell membrane potentials and amylase release.
    Poulsen JH; Williams JA
    J Physiol; 1977 Jan; 264(2):323-39. PubMed ID: 320310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A study of the Na+/H+ antiport in the archaeon Methanobacterium thermoautotrophicum strain delta H.
    Majerník A; Smigán P; Greksák M
    Biochem Mol Biol Int; 1997 Sep; 43(1):123-32. PubMed ID: 9315290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A; Killian JA; Verkleij AJ; Wilschut J
    Biophys J; 1999 Oct; 77(4):2003-14. PubMed ID: 10512820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen as an inductor of divalent cation permeability through biological and model lipid membranes.
    Lebedev AV; Levitsky DO; Loginov VA
    Adv Myocardiol; 1982; 3():425-38. PubMed ID: 6302785
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mg2+ control of respiration in isolated rat liver mitochondria.
    Panov A; Scarpa A
    Biochemistry; 1996 Oct; 35(39):12849-56. PubMed ID: 8841128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Passive K+-Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations.
    Lauf PK
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C271-8. PubMed ID: 3929615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alterations in mitochondrial Ca2+ flux by the antibiotic X-537A (lasalocid-A).
    Antonio RV; da Silva LP; Vercesi AE
    Biochim Biophys Acta; 1991 Feb; 1056(3):250-8. PubMed ID: 1705820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leucocyte locomotion and chemotaxis. The influence of divalent cations and cation ionophores.
    Wilkinson PC
    Exp Cell Res; 1975 Jul; 93(2):420-6. PubMed ID: 808419
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.