These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 2118823)

  • 21. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers.
    Hoffman PN; Thompson GW; Griffin JW; Price DL
    J Cell Biol; 1985 Oct; 101(4):1332-40. PubMed ID: 2413041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. gamma-diketone peripheral neuropathy. II. Neurofilament subunit content.
    Chiu FC; Opanashuk LA; He DK; Lehning EJ; LoPachin RM
    Toxicol Appl Pharmacol; 2000 Jun; 165(2):141-7. PubMed ID: 10828209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic fiber perturbations and neuritic outgrowth produced by intrafimbrial infusion of the neurofilament-disrupting agent 2,5-hexanedione.
    Di Patre PL; Butcher LL
    Brain Res; 1991 Jan; 539(1):126-32. PubMed ID: 1849777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytoskeletal disorganization induced by local application of beta, beta'-iminodipropionitrile and 2,5-hexanedione.
    Griffin JW; Fahnestock KE; Price DL; Cork LC
    Ann Neurol; 1983 Jul; 14(1):55-61. PubMed ID: 6684411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alterations in rat axonal cytoskeletal proteins induced by in vitro and in vivo 2,5-hexanedione exposure.
    DeCaprio AP; O'Neill EA
    Toxicol Appl Pharmacol; 1985 Apr; 78(2):235-47. PubMed ID: 3929425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation-related immunoreactivity and the rate of transport of neurofilaments in chronic 2,5-hexanedione intoxication.
    Watson DF; Fittro KP; Hoffman PN; Griffin JW
    Brain Res; 1991 Jan; 539(1):103-9. PubMed ID: 1707736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gamma-Diketone central neuropathy: quantitative analyses of cytoskeletal components in myelinated axons of the rat rubrospinal tract.
    Lopachin RM; Jortner BS; Reid ML; Monir A
    Neurotoxicology; 2005 Dec; 26(6):1021-30. PubMed ID: 15964632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel 2,5-hexanedione analogues. Substituent-induced control of the protein cross-linking potential and oxidation susceptibility of the resulting primary amine-derived pyrroles.
    Xu G; Singh MP; Gopal D; Sayre LM
    Chem Res Toxicol; 2001 Mar; 14(3):264-74. PubMed ID: 11258975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytoskeletal changes induced by 2,5-hexanedione on developing human neurons in vitro.
    Moretto G; Monaco S; Passarin MG; Benedetti MD; Rizzuto N
    Arch Toxicol; 1991; 65(5):409-13. PubMed ID: 1929857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of pyrrole formation in the alteration of neurofilament transport induced during exposure to 2,5-hexanedione.
    Pyle SJ; Amarnath V; Graham DG; Anthony DC
    J Neuropathol Exp Neurol; 1992 Jul; 51(4):451-8. PubMed ID: 1619444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructural studies of the dying-back process. V. Axonal neurofilaments accumulate at sites of 2,5-hexanedione application: evidence for nerve fibre dysfunction in experimental hexacarbon neuropathy.
    Politis MJ; Pellegrino RG; Spencer PS
    J Neurocytol; 1980 Aug; 9(4):505-16. PubMed ID: 7192310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative neurotoxicity and pyrrole-forming potential of 2,5-hexanedione and perdeuterio-2,5-hexanedione in the rat.
    DeCaprio AP; Briggs RG; Jackowski SJ; Kim JC
    Toxicol Appl Pharmacol; 1988 Jan; 92(1):75-85. PubMed ID: 3341029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotoxic effects of 2,5-hexanedione on normal and neurofilament-deficient quail.
    Hirai T; Mizutani M; Kimura T; Ochiai K; Umemura T; Itakura C
    Toxicol Pathol; 1999; 27(3):348-53. PubMed ID: 10356712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for multiple mechanisms responsible for 2,5-hexanedione-induced neuropathy.
    Lapadula DM; Suwita E; Abou-Donia MB
    Brain Res; 1988 Aug; 458(1):123-31. PubMed ID: 3145093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid reorganization of the axonal cytoskeleton induced by a gamma diketone.
    Zagoren JC; Politis MJ; Spencer PS
    Brain Res; 1983 Jun; 270(1):162-4. PubMed ID: 6683582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxic neurofilamentous axonopathies and fast anterograde axonal transport. III. Recovery from single injections and multiple dosing effects of acrylamide and 2,5-hexanedione.
    Sickles DW
    Toxicol Appl Pharmacol; 1991 May; 108(3):390-6. PubMed ID: 2020966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrrole oxidation and protein cross-linking as necessary steps in the development of gamma-diketone neuropathy.
    Genter St Clair MB; Amarnath V; Moody MA; Anthony DC; Anderson CW; Graham DG
    Chem Res Toxicol; 1988; 1(3):179-85. PubMed ID: 2979729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toxic neurofilamentous axonopathies and fast anterograde axonal transport. IV. In vitro analysis of transport following acrylamide and 2,5-hexanedione.
    Sickles DW
    Toxicol Lett; 1992 Jul; 61(2-3):199-204. PubMed ID: 1641866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of 2,5-hexanedione on calpain-mediated degradation of human neurofilaments in vitro.
    Heijink E; Scholten SW; Bolhuis PA; de Wolff FA
    Chem Biol Interact; 2000 Dec; 129(3):231-47. PubMed ID: 11137063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of diketone neurotoxicity.
    DeCaprio AP
    Chem Biol Interact; 1985; 54(3):257-70. PubMed ID: 3902259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.