These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21188609)

  • 1. Simulated evolution of the vertebral body based on basic multicellular unit activities.
    Wang C; Zhang C; Han J; Wu H; Fan Y
    J Bone Miner Metab; 2011 Jul; 29(4):466-76. PubMed ID: 21188609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical analysis of long-term bisphosphonate effects on trabecular bone volume and microdamage.
    Nyman JS; Yeh OC; Hazelwood SJ; Martin RB
    Bone; 2004 Jul; 35(1):296-305. PubMed ID: 15207770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of topology optimization on the quantitative description of the external shape of bone structure.
    Xinghua Z; He G; Bingzhao G
    J Biomech; 2005 Aug; 38(8):1612-20. PubMed ID: 15958218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.
    Goda I; Ganghoffer JF
    J Mech Behav Biomed Mater; 2015 Nov; 51():99-118. PubMed ID: 26232945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of alendronate and risedronate effects on canine vertebral remodeling and microdamage.
    Wang X; Erickson AM; Allen MR; Burr DB; Martin RB; Hazelwood SJ
    J Biomech; 2009 May; 42(7):938-44. PubMed ID: 19285313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A morphological model of vertebral trabecular bone.
    Kim HS; Al-Hassani ST
    J Biomech; 2002 Aug; 35(8):1101-14. PubMed ID: 12126669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of trabecular remodeling using a simplified structural model.
    Tayyar S; Weinhold PS; Butler RA; Woodard JC; Zardiackas LD; St John KR; Bledsoe JM; Gilbert JA
    Bone; 1999 Dec; 25(6):733-9. PubMed ID: 10593419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The numerical simulation of osteophyte formation on the edge of the vertebral body using quantitative bone remodeling theory.
    He G; Xinghua Z
    Joint Bone Spine; 2006 Jan; 73(1):95-101. PubMed ID: 16253537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.
    Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML
    J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Damage-based finite-element vertebroplasty simulations.
    Kosmopoulos V; Keller TS
    Eur Spine J; 2004 Nov; 13(7):617-25. PubMed ID: 14730441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertebroplasty and kyphoplasty affect vertebral motion segment stiffness and stress distributions: a microstructural finite-element study.
    Keller TS; Kosmopoulos V; Lieberman IH
    Spine (Phila Pa 1976); 2005 Jun; 30(11):1258-65. PubMed ID: 15928549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties.
    van Lenthe GH; Stauber M; Müller R
    Bone; 2006 Dec; 39(6):1182-9. PubMed ID: 16949356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis.
    Seeman E
    Osteoporos Int; 2003; 14 Suppl 3():S2-8. PubMed ID: 12730770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The significance of transient changes in trabecular bone remodeling activation.
    Weinhold PS; Gilbert JA; Woodard JC
    Bone; 1994; 15(5):577-84. PubMed ID: 7980969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.
    Müller R
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S25-35. PubMed ID: 15340800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model.
    Kosmopoulos V; Keller TS
    Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation.
    Zhang L; Yang G; Wu L; Yu B
    Clin Biomech (Bristol, Avon); 2010 Feb; 25(2):166-72. PubMed ID: 19917516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.