These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21189)

  • 1. Hydrogen exchange study of membrane-bound rhodopsin. I. Protein structure.
    Downer NW; Englander SW
    J Biol Chem; 1977 Nov; 252(22):8092-100. PubMed ID: 21189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen exchange study of membrane-bound rhodopsin. II. Light-induced protein structure change.
    Downer NW; Englander SW
    J Biol Chem; 1977 Nov; 252(22):8101-4. PubMed ID: 21190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-examination of rhodopsin structure by hydrogen exchange.
    Englander JJ; Downer NW; Englander SW
    J Biol Chem; 1982 Jul; 257(14):7982-6. PubMed ID: 6979541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conformation of membrane-bound and detergent-solubilised bovine rhodopsin. A comparative hydrogen-isotope exchange study.
    Osborne HB; Nabedryk-Viala E
    Eur J Biochem; 1978 Aug; 89(1):81-8. PubMed ID: 699918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange.
    Downer NW; Bruchman TJ; Hazzard JH
    J Biol Chem; 1986 Mar; 261(8):3640-7. PubMed ID: 3949781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions.
    Davoust J; Bienvenue A; Fellmann P; Devaux PF
    Biochim Biophys Acta; 1980 Feb; 596(1):28-42. PubMed ID: 6243483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination.
    Keirns JJ; Miki N; Bitensky MW; Keirns M
    Biochemistry; 1975 Jun; 14(12):2760-6. PubMed ID: 167806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin.
    Hamm HE; Deretic D; Hofmann KP; Schleicher A; Kohl B
    J Biol Chem; 1987 Aug; 262(22):10831-8. PubMed ID: 2440875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the electrical conductivity of rhodopsin solutions.
    Vasilescu V; Dinu A; Aricescu I; Chirieri-Kovács E
    Biochim Biophys Acta; 1986 Apr; 849(1):172-4. PubMed ID: 3485445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of glycosylation inhibitors on the frog retina.
    Chambers JP; Tsin AT; Raymond NY; Aldape FG; Rodriguez KA
    Brain Res Bull; 1986 Aug; 17(2):259-63. PubMed ID: 3094838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lived photoproducts of rhodopsin in the retina of the frog.
    Gyllenberg G; Reuter T; Sippel H
    Vision Res; 1974 Dec; 14(12):1349-57. PubMed ID: 4548594
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoregeneration of rhodopsin and isorhodopsin from metarhodopsin III in the frog retina.
    Reuter T
    Vision Res; 1976; 16(9):909-17. PubMed ID: 1085064
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin.
    Hicks D; Molday RS
    Exp Eye Res; 1986 Jan; 42(1):55-71. PubMed ID: 2420630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calmodulin on the structural state of photoreceptor membranes and rhodopsin-containing phospholipid vesicles.
    Volotovski ID; Ryba NJ; Watts A
    Biochem Biophys Res Commun; 1985 Jun; 129(2):517-21. PubMed ID: 4015644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of multiple forms of rhodopsin and minor proteins in frog and bovine rod outer segment disc membranes. Electrophoresis, lectin labeling, and proteolysis studies.
    Molday RS; Molday LL
    J Biol Chem; 1979 Jun; 254(11):4653-60. PubMed ID: 312291
    [No Abstract]   [Full Text] [Related]  

  • 18. The primary event in vision investigated by time-resolved fluorescence spectroscopy.
    Doukas AG; Junnarkar MR; Alfano RR; Callender RH; Balogh-Nair V
    Biophys J; 1985 Jun; 47(6):795-8. PubMed ID: 4016199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-terminal peptides of rhodopsin. Determination of the optimum sequence for recognition of retinal transducin.
    Takemoto DJ; Morrison D; Davis LC; Takemoto LJ
    Biochem J; 1986 Apr; 235(1):309-12. PubMed ID: 3461782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteinase-treated photoreceptor discs. Photoelectric activity of the partially-digested rhodopsin and membrane orientation.
    Bayramashvili DI; Drachev AL; Drachev LA; Kaulen AD; Kudelin AB; Martynov VI; Skulachev VP
    Eur J Biochem; 1984 Aug; 142(3):583-90. PubMed ID: 6468381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.