BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21189016)

  • 1. The formation of wine lactone from grape-derived secondary metabolites.
    Giaccio J; Capone DL; Håkansson AE; Smyth HE; Elsey GM; Sefton MA; Taylor DK
    J Agric Food Chem; 2011 Jan; 59(2):660-4. PubMed ID: 21189016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between Menthiafolic Acid and Wine Lactone in Wine.
    Giaccio J; Curtin CD; Sefton MA; Taylor DK
    J Agric Food Chem; 2015 Sep; 63(37):8241-6. PubMed ID: 26321591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of wine lactone formation: demonstration of stereoselective cyclization and 1,3-hydride shift.
    Luan F; Degenhardt A; Mosandl A; Wüst M
    J Agric Food Chem; 2006 Dec; 54(26):10245-52. PubMed ID: 17177567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odour-active constituents of Fiano wine.
    Ugliano M; Moio L
    Anal Chim Acta; 2008 Jul; 621(1):79-85. PubMed ID: 18573373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine.
    Ilc T; Halter D; Miesch L; Lauvoisard F; Kriegshauser L; Ilg A; Baltenweck R; Hugueney P; Werck-Reichhart D; Duchêne E; Navrot N
    New Phytol; 2017 Jan; 213(1):264-274. PubMed ID: 27560385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of Stereoisomers of Dill Ether and Wine Lactone by
    Trapp T; Kirchner T; Birk F; Fraatz MA; Zorn H
    J Agric Food Chem; 2019 Dec; 67(49):13400-13411. PubMed ID: 30813719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concise enantioselective synthesis of wine lactone via intramolecular Diels-Alder reaction.
    Ohkubo Y; Masuda Y; Ogura Y; Takikawa H; Watanabe H
    Biosci Biotechnol Biochem; 2021 May; 85(6):1390-1394. PubMed ID: 33720279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rates of formation of cis- and trans-oak lactone from 3-methyl-4-hydroxyoctanoic acid.
    Wilkinson KL; Elsey GM; Prager RH; Pollnitz AP; Sefton MA
    J Agric Food Chem; 2004 Jun; 52(13):4213-8. PubMed ID: 15212471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of Glycoconjugates of 3-Methyl-4-hydroxyoctanoic Acid in Fruits, Leaves, and Shoots of Vitis vinifera cv. Monastrell following Foliar Applications of Oak Extract or Oak Lactone.
    Pardo-Garcia AI; Wilkinson KL; Culbert JA; Lloyd ND; Alonso GL; Salinas MR
    J Agric Food Chem; 2015 May; 63(18):4533-8. PubMed ID: 25912091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization.
    Marangon M; Van Sluyter SC; Robinson EM; Muhlack RA; Holt HE; Haynes PA; Godden PW; Smith PA; Waters EJ
    Food Chem; 2012 Dec; 135(3):1157-65. PubMed ID: 22953838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Vitis vinifera L. Cv. Carménère grape and wine proanthocyanidins.
    Fernández K; Kennedy JA; Agosin E
    J Agric Food Chem; 2007 May; 55(9):3675-80. PubMed ID: 17407309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile compounds and sensory attributes of wine from Cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film.
    Ou C; Du X; Shellie K; Ross C; Qian MC
    J Agric Food Chem; 2010 Dec; 58(24):12890-8. PubMed ID: 21080711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study.
    Lee JE; Hwang GS; Van Den Berg F; Lee CH; Hong YS
    Anal Chim Acta; 2009 Aug; 648(1):71-6. PubMed ID: 19616691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines.
    Vilela-Moura A; Schuller D; Mendes-Faia A; Silva RD; Chaves SR; Sousa MJ; Côrte-Real M
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):271-80. PubMed ID: 20931186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on anthocyanins in wines from Vitis vinifera cv. pinotage: factors influencing the formation of pinotin A and its correlation with wine age.
    Schwarz M; Hofmann G; Winterhalter P
    J Agric Food Chem; 2004 Feb; 52(3):498-504. PubMed ID: 14759139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of selected aroma-active compounds in Pinot noir wines from different grape maturities.
    Fang Y; Qian MC
    J Agric Food Chem; 2006 Nov; 54(22):8567-73. PubMed ID: 17061835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the volatile compound production of fermentations made from musts with increasing grape content.
    Keyzers RA; Boss PK
    J Agric Food Chem; 2010 Jan; 58(2):1153-64. PubMed ID: 20020683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of S-cysteinylated and S-glutathionylated thiol precursors during oxidation of Melon B. and Sauvignon blanc musts.
    Roland A; Vialaret J; Razungles A; Rigou P; Schneider R
    J Agric Food Chem; 2010 Apr; 58(7):4406-13. PubMed ID: 20199086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.