These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Lauderdale KJ; Boles BR; Cheung AL; Horswill AR Infect Immun; 2009 Apr; 77(4):1623-35. PubMed ID: 19188357 [TBL] [Abstract][Full Text] [Related]
4. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. O'Neill E; Pozzi C; Houston P; Smyth D; Humphreys H; Robinson DA; O'Gara JP J Clin Microbiol; 2007 May; 45(5):1379-88. PubMed ID: 17329452 [TBL] [Abstract][Full Text] [Related]
5. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. McCarthy H; Rudkin JK; Black NS; Gallagher L; O'Neill E; O'Gara JP Front Cell Infect Microbiol; 2015; 5():1. PubMed ID: 25674541 [TBL] [Abstract][Full Text] [Related]
6. Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Vergara-Irigaray M; Valle J; Merino N; Latasa C; García B; Ruiz de Los Mozos I; Solano C; Toledo-Arana A; Penadés JR; Lasa I Infect Immun; 2009 Sep; 77(9):3978-91. PubMed ID: 19581398 [TBL] [Abstract][Full Text] [Related]
7. σ Valle J; Echeverz M; Lasa I J Bacteriol; 2019 Jun; 201(11):. PubMed ID: 30858304 [No Abstract] [Full Text] [Related]
8. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. O'Neill E; Pozzi C; Houston P; Humphreys H; Robinson DA; Loughman A; Foster TJ; O'Gara JP J Bacteriol; 2008 Jun; 190(11):3835-50. PubMed ID: 18375547 [TBL] [Abstract][Full Text] [Related]
9. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Mirani ZA; Aziz M; Khan MN; Lal I; Hassan NU; Khan SI Microb Pathog; 2013; 61-62():66-72. PubMed ID: 23711963 [TBL] [Abstract][Full Text] [Related]
10. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Valle J; Toledo-Arana A; Berasain C; Ghigo JM; Amorena B; Penadés JR; Lasa I Mol Microbiol; 2003 May; 48(4):1075-87. PubMed ID: 12753197 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the modular design of the autolysin/adhesin Aaa from Staphylococcus aureus. Hirschhausen N; Schlesier T; Peters G; Heilmann C PLoS One; 2012; 7(6):e40353. PubMed ID: 22768285 [TBL] [Abstract][Full Text] [Related]
13. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. Mrak LN; Zielinska AK; Beenken KE; Mrak IN; Atwood DN; Griffin LM; Lee CY; Smeltzer MS PLoS One; 2012; 7(6):e38453. PubMed ID: 22685571 [TBL] [Abstract][Full Text] [Related]
14. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Heilmann C; Hussain M; Peters G; Götz F Mol Microbiol; 1997 Jun; 24(5):1013-24. PubMed ID: 9220008 [TBL] [Abstract][Full Text] [Related]
15. Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. Mirani ZA; Aziz M; Khan SI J Antibiot (Tokyo); 2015 Feb; 68(2):98-105. PubMed ID: 25160508 [TBL] [Abstract][Full Text] [Related]