BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 21189350)

  • 1. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo.
    Mills SD; Eakin AE; Buurman ET; Newman JV; Gao N; Huynh H; Johnson KD; Lahiri S; Shapiro AB; Walkup GK; Yang W; Stokes SS
    Antimicrob Agents Chemother; 2011 Mar; 55(3):1088-96. PubMed ID: 21189350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic assessment of DNA ligase as an antibacterial target in Staphylococcus aureus.
    Podos SD; Thanassi JA; Pucci MJ
    Antimicrob Agents Chemother; 2012 Aug; 56(8):4095-102. PubMed ID: 22585221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases.
    Meier TI; Yan D; Peery RB; McAllister KA; Zook C; Peng SB; Zhao G
    FEBS J; 2008 Nov; 275(21):5258-71. PubMed ID: 18795946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of bacterial NAD+-dependent DNA ligase inhibitors: optimization of antibacterial activity.
    Stokes SS; Huynh H; Gowravaram M; Albert R; Cavero-Tomas M; Chen B; Harang J; Loch JT; Lu M; Mullen GB; Zhao S; Liu CF; Mills SD
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4556-60. PubMed ID: 21719282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics.
    Korycka-Machala M; Rychta E; Brzostek A; Sayer HR; Rumijowska-Galewicz A; Bowater RP; Dziadek J
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2888-97. PubMed ID: 17548501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity.
    Surivet JP; Lange R; Hubschwerlen C; Keck W; Specklin JL; Ritz D; Bur D; Locher H; Seiler P; Strasser DS; Prade L; Kohl C; Schmitt C; Chapoux G; Ilhan E; Ekambaram N; Athanasiou A; Knezevic A; Sabato D; Chambovey A; Gaertner M; Enderlin M; Boehme M; Sippel V; Wyss P
    Bioorg Med Chem Lett; 2012 Nov; 22(21):6705-11. PubMed ID: 23006603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I.
    Yadav N; Khanam T; Shukla A; Rai N; Hajela K; Ramachandran R
    Org Biomol Chem; 2015 May; 13(19):5475-87. PubMed ID: 25875403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I.
    Srivastava SK; Dube D; Tewari N; Dwivedi N; Tripathi RP; Ramachandran R
    Nucleic Acids Res; 2005; 33(22):7090-101. PubMed ID: 16361267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and functional characterization of an NAD(+)-dependent DNA ligase from Staphylococcus aureus.
    Kaczmarek FS; Zaniewski RP; Gootz TD; Danley DE; Mansour MN; Griffor M; Kamath AV; Cronan M; Mueller J; Sun D; Martin PK; Benton B; McDowell L; Biek D; Schmid MB
    J Bacteriol; 2001 May; 183(10):3016-24. PubMed ID: 11325928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New class of bacterial phenylalanyl-tRNA synthetase inhibitors with high potency and broad-spectrum activity.
    Beyer D; Kroll HP; Endermann R; Schiffer G; Siegel S; Bauser M; Pohlmann J; Brands M; Ziegelbauer K; Haebich D; Eymann C; Brötz-Oesterhelt H
    Antimicrob Agents Chemother; 2004 Feb; 48(2):525-32. PubMed ID: 14742205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD
    Shukla A; Afsar M; Kumar N; Kumar S; Ramachandran R
    J Struct Biol; 2021 Mar; 213(1):107655. PubMed ID: 33197566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification through structure-based methods of a bacterial NAD(+)-dependent DNA ligase inhibitor that avoids known resistance mutations.
    Murphy-Benenato K; Wang H; McGuire HM; Davis HE; Gao N; Prince DB; Jahic H; Stokes SS; Boriack-Sjodin PA
    Bioorg Med Chem Lett; 2014 Jan; 24(1):360-6. PubMed ID: 24287382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negishi cross-coupling enabled synthesis of novel NAD(+)-dependent DNA ligase inhibitors and SAR development.
    Murphy-Benenato KE; Gingipalli L; Boriack-Sjodin PA; Martinez-Botella G; Carcanague D; Eyermann CJ; Gowravaram M; Harang J; Hale MR; Ioannidis G; Jahic H; Johnstone M; Kutschke A; Laganas VA; Loch JT; Miller MD; Oguto H; Patel SJ
    Bioorg Med Chem Lett; 2015 Nov; 25(22):5172-7. PubMed ID: 26463129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents.
    Eakin AE; Green O; Hales N; Walkup GK; Bist S; Singh A; Mullen G; Bryant J; Embrey K; Gao N; Breeze A; Timms D; Andrews B; Uria-Nickelsen M; Demeritt J; Loch JT; Hull K; Blodgett A; Illingworth RN; Prince B; Boriack-Sjodin PA; Hauck S; MacPherson LJ; Ni H; Sherer B
    Antimicrob Agents Chemother; 2012 Mar; 56(3):1240-6. PubMed ID: 22183167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Pharmacodynamic Target Investigation of Two Bacterial Topoisomerase Inhibitors, ACT-387042 and ACT-292706, in the Neutropenic Murine Thigh Model against Streptococcus pneumoniae and Staphylococcus aureus.
    Lepak AJ; Seiler P; Surivet JP; Ritz D; Kohl C; Andes DR
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3626-32. PubMed ID: 27044547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and Optimization of NAD+-Dependent DNA Ligase Inhibitors as Novel Antibacterial Compounds.
    Bi F; Ma R; Ma S
    Curr Pharm Des; 2017; 23(14):2117-2130. PubMed ID: 27784238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of a novel and potent class of FabI-directed antibacterial agents.
    Payne DJ; Miller WH; Berry V; Brosky J; Burgess WJ; Chen E; DeWolf WE; Fosberry AP; Greenwood R; Head MS; Heerding DA; Janson CA; Jaworski DD; Keller PM; Manley PJ; Moore TD; Newlander KA; Pearson S; Polizzi BJ; Qiu X; Rittenhouse SF; Slater-Radosti C; Salyers KL; Seefeld MA; Smyth MG; Takata DT; Uzinskas IN; Vaidya K; Wallis NG; Winram SB; Yuan CC; Huffman WF
    Antimicrob Agents Chemother; 2002 Oct; 46(10):3118-24. PubMed ID: 12234833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics/Pharmacodynamics of Peptide Deformylase Inhibitor GSK1322322 against Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus in Rodent Models of Infection.
    Hoover J; Lewandowski T; Straub RJ; Novick SJ; DeMarsh P; Aubart K; Rittenhouse S; Zalacain M
    Antimicrob Agents Chemother; 2016 Jan; 60(1):180-9. PubMed ID: 26482300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetic mechanism of S. pneumoniae DNA ligase and inhibition by adenosine-based antibacterial compounds.
    Jahić H; Liu CF; Thresher J; Livchak S; Wang H; Ehmann DE
    Biochem Pharmacol; 2012 Sep; 84(5):654-60. PubMed ID: 22743594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacodynamics of a new cephalosporin, PPI-0903 (TAK-599), active against methicillin-resistant Staphylococcus aureus in murine thigh and lung infection models: identification of an in vivo pharmacokinetic-pharmacodynamic target.
    Andes D; Craig WA
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1376-83. PubMed ID: 16569855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.