BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21189417)

  • 1. Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry.
    Manes NP; Dong L; Zhou W; Du X; Reghu N; Kool AC; Choi D; Bailey CL; Petricoin EF; Liotta LA; Popov SG
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.000927. PubMed ID: 21189417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Phosphoproteomic Using Titanium Dioxide Micro-Columns and Label-Free Quantitation.
    Barrios-Llerena ME; Le Bihan T
    Methods Mol Biol; 2019; 1977():35-42. PubMed ID: 30980321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics using iTRAQ.
    Jones AM; Nühse TS
    Methods Mol Biol; 2011; 779():287-302. PubMed ID: 21837574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylenediaminetetraacetic acid increases identification rate of phosphoproteomics in real biological samples.
    Nakamura T; Myint KT; Oda Y
    J Proteome Res; 2010 Mar; 9(3):1385-91. PubMed ID: 20099890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SILAC-based temporal phosphoproteomics.
    Francavilla C; Hekmat O; Blagoev B; Olsen JV
    Methods Mol Biol; 2014; 1188():125-48. PubMed ID: 25059609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteomics with Activated Ion Electron Transfer Dissociation.
    Riley NM; Hebert AS; Dürnberger G; Stanek F; Mechtler K; Westphall MS; Coon JJ
    Anal Chem; 2017 Jun; 89(12):6367-6376. PubMed ID: 28383256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining alkaline phosphatase treatment and hybrid linear ion trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for the efficient and confident identification of protein phosphorylation.
    Wu HY; Tseng VS; Chen LC; Chang YC; Ping P; Liao CC; Tsay YG; Yu JS; Liao PC
    Anal Chem; 2009 Sep; 81(18):7778-87. PubMed ID: 19702290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteome Analysis in Immune Cell Signaling.
    Rathore D; Nita-Lazar A
    Curr Protoc Immunol; 2020 Sep; 130(1):e105. PubMed ID: 32936995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free Quantitative Phosphoproteomics for Algae.
    Ford MM; Lawrence SR; Werth EG; McConnell EW; Hicks LM
    Methods Mol Biol; 2020; 2139():197-211. PubMed ID: 32462588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics.
    Yang C; Zhong X; Li L
    Electrophoresis; 2014 Dec; 35(24):3418-29. PubMed ID: 24687451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoblast Phosphoproteomics as a Tool to Investigate Global Signaling Events During Myogenesis.
    Jones FK; Hardman GE; Ferries S; Eyers CE; Pisconti A
    Methods Mol Biol; 2019; 1889():301-317. PubMed ID: 30367422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra.
    Yu LR; Zhu Z; Chan KC; Issaq HJ; Dimitrov DS; Veenstra TD
    J Proteome Res; 2007 Nov; 6(11):4150-62. PubMed ID: 17924679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics.
    Dreier RF; Ahrné E; Broz P; Schmidt A
    J Proteome Res; 2019 Jan; 18(1):493-507. PubMed ID: 30387612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.