These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 21190015)
1. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Datta R; Quispe MA; Sarkar D Bull Environ Contam Toxicol; 2011 Jan; 86(1):124-8. PubMed ID: 21190015 [TBL] [Abstract][Full Text] [Related]
2. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
3. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Attinti R; Barrett KR; Datta R; Sarkar D Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794 [TBL] [Abstract][Full Text] [Related]
4. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Lai HY; Chen ZS Chemosphere; 2004 Apr; 55(3):421-30. PubMed ID: 14987941 [TBL] [Abstract][Full Text] [Related]
5. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Brandt R; Merkl N; Schultze-Kraft R; Infante C; Broll G Int J Phytoremediation; 2006; 8(4):273-84. PubMed ID: 17305302 [TBL] [Abstract][Full Text] [Related]
6. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Gonzaga MI; Santos JA; Ma LQ Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547 [TBL] [Abstract][Full Text] [Related]
7. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P; Visoottiviseth P Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [TBL] [Abstract][Full Text] [Related]
8. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Danh LT; Truong P; Mammucari R; Foster N Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227 [TBL] [Abstract][Full Text] [Related]
9. Agronomic and economic evaluation of Vetiver grass (Vetiveria zizanioides L.) as means for phytoremediation of diesel polluted soils in Israel. Dudai N; Tsion I; Shamir SZ; Nitzan N; Chaimovitsh D; Shachter A; Haim A J Environ Manage; 2018 Apr; 211():247-255. PubMed ID: 29408073 [TBL] [Abstract][Full Text] [Related]
10. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Andra SS; Datta R; Sarkar D; Saminathan SK; Mullens CP; Bach SB Environ Pollut; 2009 Jul; 157(7):2173-83. PubMed ID: 19282075 [TBL] [Abstract][Full Text] [Related]
11. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Liu CP; Luo CL; Xu XH; Wu CA; Li FB; Zhang G Chemosphere; 2012 Mar; 86(11):1106-11. PubMed ID: 22226367 [TBL] [Abstract][Full Text] [Related]
12. Arsenic Removal of Contaminated Soils by Phytoremediation of Vetiver Grass, Chara Algae and Water Hyacinth. Taleei MM; Karbalaei Ghomi N; Jozi SA Bull Environ Contam Toxicol; 2019 Jan; 102(1):134-139. PubMed ID: 30456656 [TBL] [Abstract][Full Text] [Related]
13. High uptake of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation? Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D Environ Pollut; 2007 Mar; 146(1):1-4. PubMed ID: 16899329 [TBL] [Abstract][Full Text] [Related]
14. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Rotkittikhun P; Chaiyarat R; Kruatrachue M; Pokethitiyook P; Baker AJ Chemosphere; 2007 Jan; 66(1):45-53. PubMed ID: 16828842 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Wang Y; Oyaizu H J Hazard Mater; 2009 Sep; 168(2-3):760-4. PubMed ID: 19321258 [TBL] [Abstract][Full Text] [Related]
16. Effect of calcium on growth performance and essential oil of vetiver grass (Chrysopogon zizanioides) grown on lead contaminated soils. Danh LT; Truong P; Mammucari R; Foster N Int J Phytoremediation; 2011; 13 Suppl 1():154-65. PubMed ID: 22046757 [TBL] [Abstract][Full Text] [Related]
17. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Punamiya P; Datta R; Sarkar D; Barber S; Patel M; Das P J Hazard Mater; 2010 May; 177(1-3):465-74. PubMed ID: 20061082 [TBL] [Abstract][Full Text] [Related]
18. On the potential of biological treatment for arsenic contaminated soils and groundwater. Wang S; Zhao X J Environ Manage; 2009 Jun; 90(8):2367-76. PubMed ID: 19269736 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Salido AL; Hasty KL; Lim JM; Butcher DJ Int J Phytoremediation; 2003; 5(2):89-103. PubMed ID: 12929493 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the bio-removal of crude oil by vetiver grass ( Kiamarsi Z; Kafi M; Soleimani M; Nezami A; Lutts S Int J Phytoremediation; 2022; 24(5):483-492. PubMed ID: 34340621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]