These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 21190246)
21. Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. Turgeman G; Zilberman Y; Zhou S; Kelly P; Moutsatsos IK; Kharode YP; Borella LE; Bex FJ; Komm BS; Bodine PV; Gazit D J Cell Biochem; 2002; 86(3):461-74. PubMed ID: 12210753 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
23. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Kato M; Namikawa T; Terai H; Hoshino M; Miyamoto S; Takaoka K Biomaterials; 2006 Jul; 27(21):3927-33. PubMed ID: 16564087 [TBL] [Abstract][Full Text] [Related]
24. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Kaito T; Myoui A; Takaoka K; Saito N; Nishikawa M; Tamai N; Ohgushi H; Yoshikawa H Biomaterials; 2005 Jan; 26(1):73-9. PubMed ID: 15193882 [TBL] [Abstract][Full Text] [Related]
25. Temporally controlled multiple-gene delivery in scaffolds: A promising strategy to enhance bone regeneration. Liu J; Xu L; Li Y; Ma J Med Hypotheses; 2011 Feb; 76(2):173-5. PubMed ID: 20926199 [TBL] [Abstract][Full Text] [Related]
26. [Reconstruction of maxillary sinus lateral bone wall and mucosa defect of with collagen sponge and acellular cancellous bone combined with bone morphogenetic protein-2]. Li XS; Sun JJ Zhonghua Yi Xue Za Zhi; 2007 May; 87(18):1276-8. PubMed ID: 17686267 [TBL] [Abstract][Full Text] [Related]
27. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering. Keogh MB; O' Brien FJ; Daly JS Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386 [TBL] [Abstract][Full Text] [Related]
28. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Kang SW; Kim JS; Park KS; Cha BH; Shim JH; Kim JY; Cho DW; Rhie JW; Lee SH Bone; 2011 Feb; 48(2):298-306. PubMed ID: 20870047 [TBL] [Abstract][Full Text] [Related]
29. Optimized use of a biodegradable polymer as a carrier material for the local delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2). Kato M; Toyoda H; Namikawa T; Hoshino M; Terai H; Miyamoto S; Takaoka K Biomaterials; 2006 Mar; 27(9):2035-41. PubMed ID: 16256191 [TBL] [Abstract][Full Text] [Related]
30. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delivery system. Kamegai A; Shimamura N; Naitou K; Nagahara K; Kanematsu N; Mori M Biomed Mater Eng; 1994; 4(4):291-307. PubMed ID: 7950877 [TBL] [Abstract][Full Text] [Related]
31. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
32. The sequential production profiles of growth factors and their relations to bone volume in ossifying bone marrow explants. Gurkan UA; Gargac J; Akkus O Tissue Eng Part A; 2010 Jul; 16(7):2295-306. PubMed ID: 20184436 [TBL] [Abstract][Full Text] [Related]
33. Increased bone morphogenetic protein-6 expression in mouse long bones after estrogen administration. Plant A; Tobias JH J Bone Miner Res; 2002 May; 17(5):782-90. PubMed ID: 12009008 [TBL] [Abstract][Full Text] [Related]
34. Bone regeneration using collagen type I vitrigel with bone morphogenetic protein-2. Zhao J; Shinkai M; Takezawa T; Ohba S; Chung UI; Nagamune T J Biosci Bioeng; 2009 Mar; 107(3):318-23. PubMed ID: 19269600 [TBL] [Abstract][Full Text] [Related]
35. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration. Wang G; Kucharski C; Lin X; Uludağ H J Drug Target; 2010 Sep; 18(8):611-26. PubMed ID: 20158316 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of bone formation by genetically-engineered bone marrow stromal cells expressing BMP-2, VEGF and angiopoietin-1. Hou H; Zhang X; Tang T; Dai K; Ge R Biotechnol Lett; 2009 Aug; 31(8):1183-9. PubMed ID: 19390786 [TBL] [Abstract][Full Text] [Related]
37. COMP-Ang1, a chimeric form of Angiopoietin 1, enhances BMP2-induced osteoblast differentiation and bone formation. Jeong BC; Kim HJ; Bae IH; Lee KN; Lee KY; Oh WM; Kim SH; Kang IC; Lee SE; Koh GY; Kim KK; Koh JT Bone; 2010 Feb; 46(2):479-86. PubMed ID: 19782780 [TBL] [Abstract][Full Text] [Related]
38. Combination of beta-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats. Zhao J; Hu J; Wang S; Sun X; Xia L; Zhang X; Zhang Z; Jiang X Oral Dis; 2010 Jan; 16(1):46-54. PubMed ID: 19619194 [TBL] [Abstract][Full Text] [Related]
39. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Jeon O; Song SJ; Yang HS; Bhang SH; Kang SW; Sung MA; Lee JH; Kim BS Biochem Biophys Res Commun; 2008 May; 369(2):774-80. PubMed ID: 18313401 [TBL] [Abstract][Full Text] [Related]
40. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. Hennig T; Lorenz H; Thiel A; Goetzke K; Dickhut A; Geiger F; Richter W J Cell Physiol; 2007 Jun; 211(3):682-91. PubMed ID: 17238135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]