These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21190269)

  • 1. NMR relaxation and magnetic properties of superparamagnetic nanoworms.
    Gossuin Y; Disch S; Vuong QL; Gillis P; Hermann RP; Park JH; Sailor MJ
    Contrast Media Mol Imaging; 2010; 5(6):318-22. PubMed ID: 21190269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance relaxation properties of superparamagnetic particles.
    Gossuin Y; Gillis P; Hocq A; Vuong QL; Roch A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):299-310. PubMed ID: 20049798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T(2)-contrast agents.
    Vuong QL; Berret JF; Fresnais J; Gossuin Y; Sandre O
    Adv Healthc Mater; 2012 Jul; 1(4):502-12. PubMed ID: 23184784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrimagnetic susceptibility contrast agents.
    Bach-Gansmo T
    Acta Radiol Suppl; 1993; 387():1-30. PubMed ID: 8390776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.
    Mishra SK; Kumar BS; Khushu S; Tripathi RP; Gangenahalli G
    Contrast Media Mol Imaging; 2016 Sep; 11(5):350-361. PubMed ID: 27230705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental study of ON-Resonance Saturation, an MRI sequence for positive contrast with superparamagnetic nanoparticles.
    Delangre S; Vuong QL; Henrard D; Magat J; Po C; Gallez B; Gossuin Y
    J Magn Reson; 2015 Mar; 252():151-62. PubMed ID: 25700117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How morphology influences relaxivity - comparative study of superparamagnetic iron oxide-polymer hybrid nanostructures.
    Ebert S; Bannwarth MB; Musyanovych A; Landfester K; Münnemann K
    Contrast Media Mol Imaging; 2015; 10(6):456-64. PubMed ID: 26153149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of superparamagnetic iron oxide nanoparticles for MR-visualization of surgical implants.
    Slabu I; Guntherodt G; Schmitz-Rode T; Hodenius M; Kramer N; Donker H; Krombach GA; Otto J; Klinge U; Baumann M
    Curr Pharm Biotechnol; 2012 Mar; 13(4):545-51. PubMed ID: 22214499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas.
    Burant A; Antonacci M; McCallister D; Zhang L; Branca RT
    J Magn Reson; 2018 Jun; 291():53-62. PubMed ID: 29702362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New simulation approach using classical formalism to water nuclear magnetic relaxation dispersions in presence of superparamagnetic particles used as MRI contrast agents.
    Vuong QL; Gossuin Y; Gillis P; Delangre S
    J Chem Phys; 2012 Sep; 137(11):114505. PubMed ID: 22998269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton relaxation enhancement.
    Wood ML; Hardy PA
    J Magn Reson Imaging; 1993; 3(1):149-56. PubMed ID: 8428082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxivities of magnetoliposomes: the effect of cholesterol.
    Carvalho A; Gonçalves MC; Martins MB; Meixedo D; Feio G
    Magn Reson Imaging; 2013 May; 31(4):610-2. PubMed ID: 23333578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.
    Wang W; Dong H; Pacheco V; Willbold D; Zhang Y; Offenhaeusser A; Hartmann R; Weirich TE; Ma P; Krause HJ; Gu Z
    J Phys Chem B; 2011 Dec; 115(49):14789-93. PubMed ID: 21972868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.
    Roohi F; Lohrke J; Ide A; Schütz G; Dassler K
    Int J Nanomedicine; 2012; 7():4447-58. PubMed ID: 22927759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron oxide nanoparticles as positive T
    Oberdick SD; Jordanova KV; Lundstrom JT; Parigi G; Poorman ME; Zabow G; Keenan KE
    Sci Rep; 2023 Jul; 13(1):11520. PubMed ID: 37460669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of particle shape and size on T2 relaxation in magnetic resonance imaging.
    York JN; Albanese C; Rodriguez O; Le YC; Ackun-Farmmer M; Van Keuren E
    J Biomed Nanotechnol; 2014 Nov; 10(11):3392-6. PubMed ID: 26000397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and Relaxation Properties of a Series of Monodispersed Magnetic Nanoparticles.
    Zhang Y; Cheng J; Liu W
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the magnetic properties of iron oxide nanoparticles used as contrast agent for MRI.
    Pouliquen D; Perroud H; Calza F; Jallet P; Le Jeune JJ
    Magn Reson Med; 1992 Mar; 24(1):75-84. PubMed ID: 1556931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pheomelanin-coated iron oxide magnetic nanoparticles: a promising candidate for negative T2 contrast enhancement in magnetic resonance imaging.
    Zottis AD; Beltrame JM; Lara LR; Costa TG; Feldhaus MJ; Pedrosa RC; Ourique F; de Campos CE; Isoppo Ede A; da Silva Miranda F; Szpoganicz B
    Chem Commun (Camb); 2015 Jun; 51(56):11194-7. PubMed ID: 26073290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents.
    Di Marco M; Sadun C; Port M; Guilbert I; Couvreur P; Dubernet C
    Int J Nanomedicine; 2007; 2(4):609-22. PubMed ID: 18203428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.