These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 21190336)
1. Molybdenum site structure of Escherichia coli YedY, a novel bacterial oxidoreductase. Pushie MJ; Doonan CJ; Moquin K; Weiner JH; Rothery R; George GN Inorg Chem; 2011 Feb; 50(3):732-40. PubMed ID: 21190336 [TBL] [Abstract][Full Text] [Related]
2. Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli. Havelius KG; Reschke S; Horn S; Döring A; Niks D; Hille R; Schulzke C; Leimkühler S; Haumann M Inorg Chem; 2011 Feb; 50(3):741-8. PubMed ID: 21190337 [TBL] [Abstract][Full Text] [Related]
3. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Brokx SJ; Rothery RA; Zhang G; Ng DP; Weiner JH Biochemistry; 2005 Aug; 44(30):10339-48. PubMed ID: 16042411 [TBL] [Abstract][Full Text] [Related]
4. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site. Qiu JA; Wilson HL; Pushie MJ; Kisker C; George GN; Rajagopalan KV Biochemistry; 2010 May; 49(18):3989-4000. PubMed ID: 20356030 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic characterization of YedY: the role of sulfur coordination in a Mo(V) sulfite oxidase family enzyme form. Yang J; Rothery R; Sempombe J; Weiner JH; Kirk ML J Am Chem Soc; 2009 Nov; 131(43):15612-4. PubMed ID: 19860477 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the coordination structures of the molybdenum(v) sites of sulfite oxidizing enzymes by pulsed EPR spectroscopy. Enemark JH; Astashkin AV; Raitsimring AM Dalton Trans; 2006 Aug; (29):3501-14. PubMed ID: 16855750 [TBL] [Abstract][Full Text] [Related]
7. Nature of halide binding to the molybdenum site of sulfite oxidase. Pushie MJ; Doonan CJ; Wilson HL; Rajagopalan KV; George GN Inorg Chem; 2011 Oct; 50(19):9406-13. PubMed ID: 21894921 [TBL] [Abstract][Full Text] [Related]
8. Structure of the active site of sulfite dehydrogenase from Starkeya novella. Doonan CJ; Kappler U; George GN Inorg Chem; 2006 Sep; 45(18):7488-92. PubMed ID: 16933953 [TBL] [Abstract][Full Text] [Related]
9. X-ray absorption spectroscopic characterization of the molybdenum site of Escherichia coli dimethyl sulfoxide reductase. George GN; Doonan CJ; Rothery RA; Boroumand N; Weiner JH Inorg Chem; 2007 Jan; 46(1):2-4. PubMed ID: 17198404 [TBL] [Abstract][Full Text] [Related]
10. Sulfur K-edge spectroscopic investigation of second coordination sphere effects in oxomolybdenum-thiolates: relationship to molybdenum-cysteine covalency and electron transfer in sulfite oxidase. Peariso K; Helton ME; Duesler EN; Shadle SE; Kirk ML Inorg Chem; 2007 Feb; 46(4):1259-67. PubMed ID: 17291118 [TBL] [Abstract][Full Text] [Related]
12. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media. Sugimoto H; Tano H; Miyake H; Itoh S Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143 [TBL] [Abstract][Full Text] [Related]
13. Coordination chemistry at the molybdenum site of sulfite oxidase: redox-induced structural changes in the cysteine 207 to serine mutant. George GN; Garrett RM; Prince RC; Rajagopalan KV Inorg Chem; 2004 Dec; 43(26):8456-60. PubMed ID: 15606194 [TBL] [Abstract][Full Text] [Related]
14. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase. Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102 [TBL] [Abstract][Full Text] [Related]
15. X-ray absorption spectroscopy of a structural analogue of the oxidized active sites in the sulfite oxidase enzyme family and related molybdenum(V) complexes. Jalilehvand F; Lim BS; Holm RH; Hedman B; Hodgson KO Inorg Chem; 2003 Sep; 42(18):5531-6. PubMed ID: 12950200 [TBL] [Abstract][Full Text] [Related]
16. Structures of the Mo(V) forms of sulfite oxidase from Arabidopsis thaliana by pulsed EPR spectroscopy. Astashkin AV; Hood BL; Feng C; Hille R; Mendel RR; Raitsimring AM; Enemark JH Biochemistry; 2005 Oct; 44(40):13274-81. PubMed ID: 16201753 [TBL] [Abstract][Full Text] [Related]
17. High-resolution EXAFS of the active site of human sulfite oxidase: comparison with density functional theory and X-ray crystallographic results. Harris HH; George GN; Rajagopalan KV Inorg Chem; 2006 Jan; 45(2):493-5. PubMed ID: 16411679 [TBL] [Abstract][Full Text] [Related]
18. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473 [TBL] [Abstract][Full Text] [Related]
19. Analogues for the molybdenum center of sulfite oxidase: oxomolybdenum(V) complexes with three thiolate sulfur donor atoms. Mader ML; Carducci MD; Enemark JH Inorg Chem; 2000 Feb; 39(3):525-31. PubMed ID: 11229572 [TBL] [Abstract][Full Text] [Related]
20. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase. Canne C; Stephan I; Finsterbusch J; Lingens F; Kappl R; Fetzner S; Hüttermann J Biochemistry; 1997 Aug; 36(32):9780-90. PubMed ID: 9245410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]