BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21190342)

  • 21. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.
    Cao X; Ding B; Yu J; Al-Deyab SS
    Carbohydr Polym; 2012 Oct; 90(2):1075-80. PubMed ID: 22840042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation.
    Okita Y; Saito T; Isogai A
    Biomacromolecules; 2010 Jun; 11(6):1696-700. PubMed ID: 20450172
    [No Abstract]   [Full Text] [Related]  

  • 23. Nanoporous networks prepared by simple air drying of aqueous TEMPO-oxidized cellulose nanofibril dispersions.
    Nemoto J; Soyama T; Saito T; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):943-6. PubMed ID: 22332709
    [No Abstract]   [Full Text] [Related]  

  • 24. TEMPO-mediated oxidation of cellulose III.
    da Silva Perez D; Montanari S; Vignon MR
    Biomacromolecules; 2003; 4(5):1417-25. PubMed ID: 12959614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.
    Hakalahti M; Salminen A; Seppälä J; Tammelin T; Hänninen T
    Carbohydr Polym; 2015 Aug; 126():78-82. PubMed ID: 25933525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers.
    Shimotoyodome A; Suzuki J; Kumamoto Y; Hase T; Isogai A
    Biomacromolecules; 2011 Oct; 12(10):3812-8. PubMed ID: 21902221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant.
    Jebali Z; Nabili A; Majdoub H; Boufi S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of completely dispersed cellulose nanofibers.
    Isogai A
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(4):161-179. PubMed ID: 29643272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions.
    Saito T; Isogai A
    Biomacromolecules; 2004; 5(5):1983-9. PubMed ID: 15360314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyvinylamine-graft-TEMPO adsorbs onto, oxidizes, and covalently bonds to wet cellulose.
    Pelton R; Ren P; Liu J; Mijolovic D
    Biomacromolecules; 2011 Apr; 12(4):942-8. PubMed ID: 21391712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose nanofibrils extracted from the byproduct of cotton plant.
    Miao X; Lin J; Tian F; Li X; Bian F; Wang J
    Carbohydr Polym; 2016 Jan; 136():841-50. PubMed ID: 26572420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Swelling and Free-Volume Characteristics of TEMPO-Oxidized Cellulose Nanofibril Films.
    Torstensen JØ; Liu M; Jin SA; Deng L; Hawari AI; Syverud K; Spontak RJ; Gregersen ØW
    Biomacromolecules; 2018 Mar; 19(3):1016-1025. PubMed ID: 29420013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose nanofibril-based multilayered thin films: effect of ionic strength on porosity, swelling, and optical properties.
    Azzam F; Moreau C; Cousin F; Menelle A; Bizot H; Cathala B
    Langmuir; 2014 Jul; 30(27):8091-100. PubMed ID: 24971725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication.
    Song J; Tang A; Liu T; Wang J
    Nanoscale; 2013 Mar; 5(6):2482-90. PubMed ID: 23412536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling.
    Hirota M; Furihata K; Saito T; Kawada T; Isogai A
    Angew Chem Int Ed Engl; 2010 Oct; 49(42):7670-2. PubMed ID: 20839205
    [No Abstract]   [Full Text] [Related]  

  • 39. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges.
    Chiulan I; Panaitescu DM; Radu ER; Vizireanu S; Sătulu V; Biţă B; Gabor RA; Nicolae CA; Raduly M; Rădiţoiu V
    Carbohydr Polym; 2021 Nov; 272():118458. PubMed ID: 34420718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.