BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21190342)

  • 41. Stability of TEMPO-oxidized cotton fibers during natural aging.
    Milanovic J; Schiehser S; Potthast A; Kostic M
    Carbohydr Polym; 2020 Feb; 230():115587. PubMed ID: 31887889
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Research in porous structure of cellulose aerogel made from cellulose nanofibrils.
    Gong C; Ni JP; Tian C; Su ZH
    Int J Biol Macromol; 2021 Mar; 172():573-579. PubMed ID: 33454335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of completely dispersed cellulose nanofibers.
    Isogai A
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(4):161-179. PubMed ID: 29643272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physicochemical properties of cellulose selectively oxidized with the 2,2,6,6-tetramethyl-1-piperidinyl oxoammonium ion.
    Suh DS; Lee KS; Chang PS; Kim KO
    J Food Sci; 2007 Jun; 72(5):C235-42. PubMed ID: 17995708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation.
    Jaušovec D; Vogrinčič R; Kokol V
    Carbohydr Polym; 2015 Feb; 116():74-85. PubMed ID: 25458275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films.
    Wu J; Du X; Yin Z; Xu S; Xu S; Zhang Y
    Carbohydr Polym; 2019 May; 211():49-56. PubMed ID: 30824103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preliminary studies on the in vivo performance of various kinds of nanocellulose for biomedical applications.
    Ho HV; Makkar P; Padalhin AR; Le TTT; Lee SY; Jaegyoung G; Lee BT
    J Biomater Appl; 2020 Feb; 34(7):942-951. PubMed ID: 31679436
    [No Abstract]   [Full Text] [Related]  

  • 50. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation.
    Carlsson DO; Lindh J; Strømme M; Mihranyan A
    Biomacromolecules; 2015 May; 16(5):1643-9. PubMed ID: 25830708
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q
    Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-step immobilization of metronidazole prodrug on TEMPO cellulose nanofibrils through thiol-yne click chemistry for in situ controlled release.
    Durand H; Baussanne I; Demeunynck M; Viger-Gravel J; Emsley L; Bardet M; Zeno E; Belgacem N; Bras J
    Carbohydr Polym; 2021 Jun; 262():117952. PubMed ID: 33838828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous silica particles: Synthesis, characterization, and their application in protein adsorption.
    Rahmatika AM; Goi Y; Kitamura T; Widiyastuti W; Ogi T
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110033. PubMed ID: 31546405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation.
    Saito T; Kuramae R; Wohlert J; Berglund LA; Isogai A
    Biomacromolecules; 2013 Jan; 14(1):248-53. PubMed ID: 23215584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TEMPO-Oxidized Bacterial Cellulose Nanofibers/Graphene Oxide Fibers for Osmotic Energy Conversion.
    Sheng N; Chen S; Zhang M; Wu Z; Liang Q; Ji P; Wang H
    ACS Appl Mater Interfaces; 2021 May; 13(19):22416-22425. PubMed ID: 33949844
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship of Distribution of Carboxy Groups to Molar Mass Distribution of TEMPO-Oxidized Algal, Cotton, and Wood Cellulose Nanofibrils.
    Ono Y; Fukui S; Funahashi R; Isogai A
    Biomacromolecules; 2019 Oct; 20(10):4026-4034. PubMed ID: 31525036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rheology of aqueous dispersions of Laponite and TEMPO-oxidized nanofibrillated cellulose.
    Šebenik U; Lapasin R; Krajnc M
    Carbohydr Polym; 2020 Jul; 240():116330. PubMed ID: 32475587
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD; Saito T; Fan Y; Isogai A
    Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin.
    Fan Y; Saito T; Isogai A
    Biomacromolecules; 2008 Jan; 9(1):192-8. PubMed ID: 18159931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.