BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21190342)

  • 61. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties.
    Pereira ALS; Feitosa JPA; Morais JPS; Rosa MF
    Carbohydr Polym; 2020 Dec; 250():116927. PubMed ID: 33049841
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.
    Zhou Y; Saito T; Bergström L; Isogai A
    Biomacromolecules; 2018 Feb; 19(2):633-639. PubMed ID: 29283555
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure retention of proteins interacting electrostatically with TEMPO-oxidized cellulose nanofiber surface.
    Yamaguchi A; Sakamoto H; Kitamura T; Hashimoto M; Suye SI
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110392. PubMed ID: 31394423
    [TBL] [Abstract][Full Text] [Related]  

  • 64. One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent.
    Huang P; Wu M; Kuga S; Wang D; Wu D; Huang Y
    ChemSusChem; 2012 Dec; 5(12):2319-22. PubMed ID: 23180637
    [TBL] [Abstract][Full Text] [Related]  

  • 65. TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber.
    Isogai T; Saito T; Isogai A
    Biomacromolecules; 2010 Jun; 11(6):1593-9. PubMed ID: 20469944
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.
    Koga H; Saito T; Kitaoka T; Nogi M; Suganuma K; Isogai A
    Biomacromolecules; 2013 Apr; 14(4):1160-5. PubMed ID: 23428212
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils.
    Wu Y; Lei C; Li J; Chen Y; Liang H; Li Y; Li B; Luo X; Pei Y; Liu S
    Carbohydr Polym; 2022 Jan; 276():118806. PubMed ID: 34823811
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Laccase complex with polyvinylamine bearing grafted TEMPO is a cellulose adhesion primer.
    Liu J; Pelton R; Obermeyer JM; Esser A
    Biomacromolecules; 2013 Aug; 14(8):2953-60. PubMed ID: 23841801
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation.
    Liimatainen H; Visanko M; Sirviö JA; Hormi OE; Niinimaki J
    Biomacromolecules; 2012 May; 13(5):1592-7. PubMed ID: 22512713
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular weight distribution and functional group profiles of TEMPO-oxidized lyocell fibers.
    Milanovic J; Schiehser S; Milanovic P; Potthast A; Kostic M
    Carbohydr Polym; 2013 Oct; 98(1):444-50. PubMed ID: 23987366
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration.
    Safwat E; Hassan ML; Saniour S; Zaki DY; Eldeftar M; Saba D; Zazou M
    J Biomater Appl; 2018 May; 32(10):1371-1381. PubMed ID: 29554839
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Soy protein hydrolysate grafted cellulose nanofibrils with bioactive signals for bone repair and regeneration.
    Salama A; Abou-Zeid RE; Cruz-Maya I; Guarino V
    Carbohydr Polym; 2020 Feb; 229():115472. PubMed ID: 31826419
    [TBL] [Abstract][Full Text] [Related]  

  • 76. TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention.
    Sultana T; Van Hai H; Abueva C; Kang HJ; Lee SY; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():12-21. PubMed ID: 31146982
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions.
    Wu J; Zhu W; Shi X; Li Q; Huang C; Tian Y; Wang S
    Carbohydr Polym; 2020 May; 236():115999. PubMed ID: 32172833
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels.
    Filpponen I; Argyropoulos DS
    Biomacromolecules; 2010 Apr; 11(4):1060-6. PubMed ID: 20235575
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modulation of oxidative damage by nitroxide free radicals.
    Dragutan I; Mehlhorn RJ
    Free Radic Res; 2007 Mar; 41(3):303-15. PubMed ID: 17364959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.