These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21190378)

  • 1. Nanofibrillation of wood pulp using a high-speed blender.
    Uetani K; Yano H
    Biomacromolecules; 2011 Feb; 12(2):348-53. PubMed ID: 21190378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics.
    Iwamoto S; Abe K; Yano H
    Biomacromolecules; 2008 Mar; 9(3):1022-6. PubMed ID: 18247566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation.
    Liimatainen H; Visanko M; Sirviö JA; Hormi OE; Niinimaki J
    Biomacromolecules; 2012 May; 13(5):1592-7. PubMed ID: 22512713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.
    Afra E; Yousefi H; Hadilam MM; Nishino T
    Carbohydr Polym; 2013 Sep; 97(2):725-30. PubMed ID: 23911507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge.
    Han J; Zhou C; Wu Y; Liu F; Wu Q
    Biomacromolecules; 2013 May; 14(5):1529-40. PubMed ID: 23544667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hindrance to nanofibrillation of undried pulp produced by the kraft cooking process.
    Ku TH; Nakatsubo F; Kuboki T; Yano H; Abe K
    Carbohydr Polym; 2022 Sep; 291():119481. PubMed ID: 35698321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures.
    Zhou C; Chu R; Wu R; Wu Q
    Biomacromolecules; 2011 Jul; 12(7):2617-25. PubMed ID: 21574638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.
    Vallejos ME; Felissia FE; Area MC; Ehman NV; Tarrés Q; Mutjé P
    Carbohydr Polym; 2016 Mar; 139():99-105. PubMed ID: 26794952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers.
    Liu S; Zhang Q; Gou S; Zhang L; Wang Z
    Carbohydr Polym; 2021 Jan; 251():117018. PubMed ID: 33142579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation.
    Kumagai A; Tajima N; Iwamoto S; Morimoto T; Nagatani A; Okazaki T; Endo T
    Int J Biol Macromol; 2019 Jan; 121():989-995. PubMed ID: 30342153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix.
    Malho JM; Laaksonen P; Walther A; Ikkala O; Linder MB
    Biomacromolecules; 2012 Apr; 13(4):1093-9. PubMed ID: 22372697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct determination of the degree of fibrillation of wood pulps by distribution analysis of pixel-resolved optical retardation.
    Uetani K; Kasuya K; Koga H; Nogi M
    Carbohydr Polym; 2021 Feb; 254():117460. PubMed ID: 33357919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency.
    Trigui K; De Loubens C; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Jul; 240():116342. PubMed ID: 32475596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-layer oil-resistant food serving containers made using cellulose nanofiber coated wood flour composites.
    Hossain R; Tajvidi M; Bousfield D; Gardner DJ
    Carbohydr Polym; 2021 Sep; 267():118221. PubMed ID: 34119175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.