BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 21190651)

  • 1. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison.
    Yoon YJ; Steele CR; Puria S
    Biophys J; 2011 Jan; 100(1):1-10. PubMed ID: 21190651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration of the organ of Corti within the cochlear apex in mice.
    Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS
    J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric vibrations in the organ of Corti by outer hair cells measured from excised gerbil cochlea.
    Lin WC; Macić A; Becker J; Nam JH
    Commun Biol; 2024 May; 7(1):600. PubMed ID: 38762693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):365-72. PubMed ID: 17065831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of Location-Dependent Organ of Corti Micro-Mechanics.
    Liu Y; Gracewski SM; Nam JH
    PLoS One; 2015; 10(8):e0133284. PubMed ID: 26317521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response of the apical turn of cochlea modeled with a tuned amplifier with negative feedback.
    Khanna SM
    Hear Res; 2004 Aug; 194(1-2):97-108. PubMed ID: 15276681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
    He W; Burwood G; Fridberger A; Nuttall AL; Ren T
    Hear Res; 2022 Sep; 423():108407. PubMed ID: 34922772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti.
    Zheng J; Deo N; Zou Y; Grosh K; Nuttall AL
    J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea.
    Nuttall AL; Guo M; Ren T
    Hear Res; 1999 May; 131(1-2):39-46. PubMed ID: 10355603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Half-octave shift in mammalian hearing is an epiphenomenon of the cochlear amplifier.
    Ramamoorthy S; Nuttall AL
    PLoS One; 2012; 7(9):e45640. PubMed ID: 23049829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner hair cell stereocilia displacement in response to focal stimulation of the basilar membrane in the ex vivo gerbil cochlea.
    Zosuls A; Rupprecht LC; Mountain DC
    Hear Res; 2021 Dec; 412():108372. PubMed ID: 34775267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.
    Meaud J; Grosh K
    Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound Induced Vibrations Deform the Organ of Corti Complex in the Low-Frequency Apical Region of the Gerbil Cochlea for Normal Hearing : Sound Induced Vibrations Deform the Organ of Corti Complex.
    Meenderink SWF; Lin X; Park BH; Dong W
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):579-591. PubMed ID: 35798901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae.
    Narayan SS; Temchin AN; Recio A; Ruggero MA
    Science; 1998 Dec; 282(5395):1882-4. PubMed ID: 9836636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae.
    He W; Kemp D; Ren T
    Elife; 2018 Sep; 7():. PubMed ID: 30183615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.