BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21190864)

  • 1. Seasonal changes in the excess energy dissipation from Photosystem II antennae in overwintering evergreen broad-leaved trees Quercus myrsinaefolia and Machilus thunbergii.
    Yamazaki JY; Kamata K; Maruta E
    J Photochem Photobiol B; 2011; 104(1-2):348-56. PubMed ID: 21190864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan.
    Tanaka C; Nakano T; Yamazaki JY; Maruta E
    Plant Physiol Biochem; 2015 Jan; 86():147-154. PubMed ID: 25500451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment.
    Porcar-Castell A; Juurola E; Ensminger I; Berninger F; Hari P; Nikinmaa E
    Tree Physiol; 2008 Oct; 28(10):1483-91. PubMed ID: 18708330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China.
    Zhu JJ; Zhang JL; Liu HC; Cao KF
    Physiol Plant; 2009 Jan; 135(1):62-72. PubMed ID: 19121100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.
    Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS
    Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.
    Ishida A; Yamazaki JY; Harayama H; Yazaki K; Ladpala P; Nakano T; Adachi M; Yoshimura K; Panuthai S; Staporn D; Maeda T; Maruta E; Diloksumpun S; Puangchit L
    Tree Physiol; 2014 Jan; 34(1):15-28. PubMed ID: 24336612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.
    Corcuera L; Morales F; Abadía A; Gil-Pelegrín E
    Tree Physiol; 2005 May; 25(5):599-608. PubMed ID: 15741152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.
    Hughes NM; Burkey KO; Cavender-Bares J; Smith WK
    J Exp Bot; 2012 Mar; 63(5):1895-905. PubMed ID: 22162871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.
    Miyake C; Amako K; Shiraishi N; Sugimoto T
    Plant Cell Physiol; 2009 Apr; 50(4):730-43. PubMed ID: 19251745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal acclimation of photosystem II in Pinus sylvestris. I. Estimating the rate constants of sustained thermal energy dissipation and photochemistry.
    Porcar-Castell A; Juurola E; Nikinmaa E; Berninger F; Ensminger I; Hari P
    Tree Physiol; 2008 Oct; 28(10):1475-82. PubMed ID: 18708329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between photochemical efficiency of photosystem II and the photochemical reflectance index of mango tree: merging data from different illuminations, seasons and leaf colors.
    Weng JH; Jhaung LH; Lin RJ; Chen HY
    Tree Physiol; 2010 Apr; 30(4):469-78. PubMed ID: 20233840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis.
    Takahashi H; Watanabe A; Tanaka A; Hashida SN; Kawai-Yamada M; Sonoike K; Uchimiya H
    Plant Cell Physiol; 2006 Dec; 47(12):1678-82. PubMed ID: 17082216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.
    Huang W; Yang YJ; Hu H; Zhang SB
    J Photochem Photobiol B; 2016 Dec; 165():71-79. PubMed ID: 27768955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of water deficit on photosystem II photochemistry and photoprotection during acclimation of lyreleaf sage (Salvia lyrata L.) plants to high light.
    Munné-Bosch S; Cela J
    J Photochem Photobiol B; 2006 Dec; 85(3):191-7. PubMed ID: 16962788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal and developmental changes in energy allocation of absorbed light at PSII in field-grown rice.
    Ishida S; Uebayashi N; Tazoe Y; Ikeuchi M; Homma K; Sato F; Endo T
    Plant Cell Physiol; 2014 Jan; 55(1):171-82. PubMed ID: 24259682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis.
    Ciszak K; Kulasek M; Barczak A; Grzelak J; Maćkowski S; Karpiński S
    Plant Signal Behav; 2015; 10(1):e982018. PubMed ID: 25654166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field.
    Lu C; Lu Q; Zhang J; Kuang T
    J Exp Bot; 2001 Sep; 52(362):1805-10. PubMed ID: 11520868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.