BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 21191071)

  • 1. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection.
    van Gent M; Griffin BD; Berkhoff EG; van Leeuwen D; Boer IG; Buisson M; Hartgers FC; Burmeister WP; Wiertz EJ; Ressing ME
    J Immunol; 2011 Feb; 186(3):1694-702. PubMed ID: 21191071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EBV latent membrane protein 1 is a negative regulator of TLR9.
    Fathallah I; Parroche P; Gruffat H; Zannetti C; Johansson H; Yue J; Manet E; Tommasino M; Sylla BS; Hasan UA
    J Immunol; 2010 Dec; 185(11):6439-47. PubMed ID: 20980631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune activation suppresses initiation of lytic Epstein-Barr virus infection.
    Ladell K; Dorner M; Zauner L; Berger C; Zucol F; Bernasconi M; Niggli FK; Speck RF; Nadal D
    Cell Microbiol; 2007 Aug; 9(8):2055-69. PubMed ID: 17419714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human B cells on their route to latent infection--early but transient expression of lytic genes of Epstein-Barr virus.
    Kalla M; Hammerschmidt W
    Eur J Cell Biol; 2012 Jan; 91(1):65-9. PubMed ID: 21450364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells.
    Fiola S; Gosselin D; Takada K; Gosselin J
    J Immunol; 2010 Sep; 185(6):3620-31. PubMed ID: 20713890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Epstein-Barr virus infection in vitro by T helper cells specific for virion glycoproteins.
    Adhikary D; Behrends U; Moosmann A; Witter K; Bornkamm GW; Mautner J
    J Exp Med; 2006 Apr; 203(4):995-1006. PubMed ID: 16549597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection.
    Ressing ME; Keating SE; van Leeuwen D; Koppers-Lalic D; Pappworth IY; Wiertz EJ; Rowe M
    J Immunol; 2005 Jun; 174(11):6829-38. PubMed ID: 15905524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TLR9 triggering in Burkitt's lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification.
    Zauner L; Melroe GT; Sigrist JA; Rechsteiner MP; Dorner M; Arnold M; Berger C; Bernasconi M; Schaefer BW; Speck RF; Nadal D
    Oncogene; 2010 Aug; 29(32):4588-98. PubMed ID: 20514021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of EBERs in the pathogenesis of EBV infection.
    Iwakiri D; Takada K
    Adv Cancer Res; 2010; 107():119-36. PubMed ID: 20399962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular link between malaria and Epstein-Barr virus reactivation.
    Chêne A; Donati D; Guerreiro-Cacais AO; Levitsky V; Chen Q; Falk KI; Orem J; Kironde F; Wahlgren M; Bejarano MT
    PLoS Pathog; 2007 Jun; 3(6):e80. PubMed ID: 17559303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of LMP1 in immune control of EBV infection.
    Pai S; Khanna R
    Semin Cancer Biol; 2001 Dec; 11(6):455-60. PubMed ID: 11669607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of lytic Epstein-Barr virus (EBV) infection in EBV-associated malignancies using adenovirus vectors in vitro and in vivo.
    Westphal EM; Mauser A; Swenson J; Davis MG; Talarico CL; Kenney SC
    Cancer Res; 1999 Apr; 59(7):1485-91. PubMed ID: 10197618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies.
    Westphal EM; Blackstock W; Feng W; Israel B; Kenney SC
    Cancer Res; 2000 Oct; 60(20):5781-8. PubMed ID: 11059774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of innate immune activation with latent Epstein-Barr virus in active MS lesions.
    Tzartos JS; Khan G; Vossenkamper A; Cruz-Sadaba M; Lonardi S; Sefia E; Meager A; Elia A; Middeldorp JM; Clemens M; Farrell PJ; Giovannoni G; Meier UC
    Neurology; 2012 Jan; 78(1):15-23. PubMed ID: 22156987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latent and lytic Epstein-Barr virus replication strategies.
    Tsurumi T; Fujita M; Kudoh A
    Rev Med Virol; 2005; 15(1):3-15. PubMed ID: 15386591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency.
    Pisano G; Roy A; Ahmed Ansari M; Kumar B; Chikoti L; Chandran B
    Virol J; 2017 Nov; 14(1):221. PubMed ID: 29132393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct patterns of viral antigen expression in Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus coinfected body-cavity-based lymphoma cell lines: potential switches in latent gene expression due to coinfection.
    Callahan J; Pai S; Cotter M; Robertson ES
    Virology; 1999 Sep; 262(1):18-30. PubMed ID: 10489337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lytic cycle switches of oncogenic human gammaherpesviruses.
    Miller G; El-Guindy A; Countryman J; Ye J; Gradoville L
    Adv Cancer Res; 2007; 97():81-109. PubMed ID: 17419942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2.
    Kelly G; Bell A; Rickinson A
    Nat Med; 2002 Oct; 8(10):1098-104. PubMed ID: 12219084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.