These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21191815)
21. S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells. Korta DZ; Tuck S; Hubbard EJ Development; 2012 Mar; 139(5):859-70. PubMed ID: 22278922 [TBL] [Abstract][Full Text] [Related]
22. Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner. Sasagawa Y; Otani M; Higashitani N; Higashitani A; Sato K; Ogura T; Yamanaka K J Cell Sci; 2009 Oct; 122(Pt 20):3663-72. PubMed ID: 19773360 [TBL] [Abstract][Full Text] [Related]
23. microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development. Mayya VK; Flamand MN; Lambert AM; Jafarnejad SM; Wohlschlegel JA; Sonenberg N; Duchaine TF Nucleic Acids Res; 2021 May; 49(9):4803-4815. PubMed ID: 33758928 [TBL] [Abstract][Full Text] [Related]
24. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs. Wallace A; Filbin ME; Veo B; McFarland C; Stepinski J; Jankowska-Anyszka M; Darzynkiewicz E; Davis RE Mol Cell Biol; 2010 Apr; 30(8):1958-70. PubMed ID: 20154140 [TBL] [Abstract][Full Text] [Related]
25. Genetic and Chemical Controls of Sperm Fate and Spermatocyte Dedifferentiation via PUF-8 and MPK-1 in Park Y; Gaddy M; Hyun M; Jones ME; Aslam HM; Lee MH Cells; 2023 Jan; 12(3):. PubMed ID: 36766775 [TBL] [Abstract][Full Text] [Related]
26. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Syntichaki P; Troulinaki K; Tavernarakis N Nature; 2007 Feb; 445(7130):922-6. PubMed ID: 17277769 [TBL] [Abstract][Full Text] [Related]
27. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans. Yu X; Vought VE; Conradt B; Maine EM Genesis; 2006 Sep; 44(9):412-8. PubMed ID: 16937415 [TBL] [Abstract][Full Text] [Related]
28. C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. Kumsta C; Hansen M PLoS One; 2012; 7(5):e35428. PubMed ID: 22574120 [TBL] [Abstract][Full Text] [Related]
29. MPK-1/ERK regulatory network controls the number of sperm by regulating timing of sperm-oocyte switch in C. elegans germline. Yoon DS; Alfhili MA; Friend K; Lee MH Biochem Biophys Res Commun; 2017 Sep; 491(4):1077-1082. PubMed ID: 28782521 [TBL] [Abstract][Full Text] [Related]
30. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Kraemer B; Crittenden S; Gallegos M; Moulder G; Barstead R; Kimble J; Wickens M Curr Biol; 1999 Sep; 9(18):1009-18. PubMed ID: 10508609 [TBL] [Abstract][Full Text] [Related]
31. LARP-1 promotes oogenesis by repressing fem-3 in the C. elegans germline. Zanin E; Pacquelet A; Scheckel C; Ciosk R; Gotta M J Cell Sci; 2010 Aug; 123(Pt 16):2717-24. PubMed ID: 20663921 [TBL] [Abstract][Full Text] [Related]
32. The spe-42 gene is required for sperm-egg interactions during C. elegans fertilization and encodes a sperm-specific transmembrane protein. Kroft TL; Gleason EJ; L'Hernault SW Dev Biol; 2005 Oct; 286(1):169-81. PubMed ID: 16120437 [TBL] [Abstract][Full Text] [Related]
33. Functional and phenotypic relevance of differentially expressed proteins in calcineurin mutants of Caenorhabditis elegans. Ahn DH; Singaravelu G; Lee S; Ahnn J; Shim YH Proteomics; 2006 Feb; 6(4):1340-50. PubMed ID: 16402360 [TBL] [Abstract][Full Text] [Related]
34. The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Chatterjee I; Richmond A; Putiri E; Shakes DC; Singson A Development; 2005 Jun; 132(12):2795-808. PubMed ID: 15930110 [TBL] [Abstract][Full Text] [Related]
35. Genetic analysis of the Caenorhabditis elegans GLH family of P-granule proteins. Spike C; Meyer N; Racen E; Orsborn A; Kirchner J; Kuznicki K; Yee C; Bennett K; Strome S Genetics; 2008 Apr; 178(4):1973-87. PubMed ID: 18430929 [TBL] [Abstract][Full Text] [Related]
36. The sperm-oocyte switch in the C. elegans hermaphrodite is controlled through steady-state levels of the fem-3 mRNA. Zanetti S; Grinschgl S; Meola M; Belfiore M; Rey S; Bianchi P; Puoti A RNA; 2012 Jul; 18(7):1385-94. PubMed ID: 22635404 [TBL] [Abstract][Full Text] [Related]
37. The Caenorhabditis elegans spe-49 gene is required for fertilization and encodes a sperm-specific transmembrane protein homologous to SPE-42. Wilson LD; Obakpolor OA; Jones AM; Richie AL; Mieczkowski BD; Fall GT; Hall RW; Rumbley JN; Kroft TL Mol Reprod Dev; 2018 Jul; 85(7):563-578. PubMed ID: 29693775 [TBL] [Abstract][Full Text] [Related]
38. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Lehner B; Calixto A; Crombie C; Tischler J; Fortunato A; Chalfie M; Fraser AG Genome Biol; 2006; 7(1):R4. PubMed ID: 16507136 [TBL] [Abstract][Full Text] [Related]
39. Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Wu JC; Go AC; Samson M; Cintra T; Mirsoian S; Wu TF; Jow MM; Routman EJ; Chu DS Genetics; 2012 Jan; 190(1):143-57. PubMed ID: 22042574 [TBL] [Abstract][Full Text] [Related]
40. RNAi pathway in C. elegans: the argonautes and collaborators. Boisvert ME; Simard MJ Curr Top Microbiol Immunol; 2008; 320():21-36. PubMed ID: 18268838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]