These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21192003)

  • 1. Preliminary approach of real-time monitoring in vitro matrix mineralization based on surface plasmon resonance detection.
    Kim SA; Das S; Lee H; Kim J; Song YM; Kim IS; Byun KM; Hwang SJ; Kim SJ
    Biotechnol Bioeng; 2011 Jun; 108(6):1473-8. PubMed ID: 21192003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells.
    Suzuki A; Ghayor C; Guicheux J; Magne D; Quillard S; Kakita A; Ono Y; Miura Y; Oiso Y; Itoh M; Caverzasio J
    J Bone Miner Res; 2006 May; 21(5):674-83. PubMed ID: 16734382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.
    Bonewald LF; Harris SE; Rosser J; Dallas MR; Dallas SL; Camacho NP; Boyan B; Boskey A
    Calcif Tissue Int; 2003 May; 72(5):537-47. PubMed ID: 12724828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy.
    Robelek R; Wegener J
    Biosens Bioelectron; 2010 Jan; 25(5):1221-4. PubMed ID: 19818594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast cultures.
    Al-Jallad HF; Nakano Y; Chen JL; McMillan E; Lefebvre C; Kaartinen MT
    Matrix Biol; 2006 Apr; 25(3):135-48. PubMed ID: 16469487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes.
    Chien FC; Chen SJ
    Biosens Bioelectron; 2004 Oct; 20(3):633-42. PubMed ID: 15494249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using surface plasmon resonance imaging to probe dynamic interactions between cells and extracellular matrix.
    Peterson AW; Halter M; Tona A; Bhadriraju K; Plant AL
    Cytometry A; 2010 Sep; 77(9):895-903. PubMed ID: 20629195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of osteoblast-like cell mineralization on tissue culture polystyrene and Ti-6Al-4V alloy disks by Tc-99m-MDP labeling and imaging in vitro.
    Wang H; Gerbaudo VH; Hobbs LW; Spector M
    Bone; 2005 Jan; 36(1):84-92. PubMed ID: 15664006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance.
    Tumolo T; Angnes L; Baptista MS
    Anal Biochem; 2004 Oct; 333(2):273-9. PubMed ID: 15450802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-optic surface plasmon resonance for vapor phase analyses.
    Kim YC; Banerji S; Masson JF; Peng W; Booksh KS
    Analyst; 2005 Jun; 130(6):838-43. PubMed ID: 15912230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging.
    Wong CL; Ho HP; Suen YK; Kong SK; Chen QL; Yuan W; Wu SY
    Biosens Bioelectron; 2008 Dec; 24(4):606-12. PubMed ID: 18644712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating.
    Chien FC; Lin CY; Yih JN; Lee KL; Chang CW; Wei PK; Sun CC; Chen SJ
    Biosens Bioelectron; 2007 May; 22(11):2737-42. PubMed ID: 17178218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive expression of thrombospondin 1 in MC3T3-E1 osteoblastic cells inhibits mineralization.
    Ueno A; Miwa Y; Miyoshi K; Horiguchi T; Inoue H; Ruspita I; Abe K; Yamashita K; Hayashi E; Noma T
    J Cell Physiol; 2006 Nov; 209(2):322-32. PubMed ID: 16883596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation.
    Lai CF; Bai S; Uthgenannt BA; Halstead LR; McLoughlin P; Schafer BW; Chu PH; Chen J; Otey CA; Cao X; Cheng SL
    J Bone Miner Res; 2006 Jan; 21(1):17-28. PubMed ID: 16355270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-mediated mineralization of MC3T3-E1 osteoblast cultures.
    Nakano Y; Addison WN; Kaartinen MT
    Bone; 2007 Oct; 41(4):549-61. PubMed ID: 17669706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal.
    Byers BA; Pavlath GK; Murphy TJ; Karsenty G; GarcĂ­a AJ
    J Bone Miner Res; 2002 Nov; 17(11):1931-44. PubMed ID: 12412799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinctada fucata mantle gene 3 (PFMG3) promotes differentiation in mouse osteoblasts (MC3T3-E1).
    Wang X; Liu S; Xie L; Zhang R; Wang Z
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Feb; 158(2):173-80. PubMed ID: 21109014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.
    Oh GY; Kim DG; Choi YW
    Opt Express; 2009 Nov; 17(23):20714-20. PubMed ID: 19997302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development.
    Quarles LD; Yohay DA; Lever LW; Caton R; Wenstrup RJ
    J Bone Miner Res; 1992 Jun; 7(6):683-92. PubMed ID: 1414487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.