BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21192640)

  • 1. Self-assembly of elastin-based peptides into the ECM: the importance of integrins and the elastin binding protein in elastic fiber assembly.
    Patel D; Menon R; Taite LJ
    Biomacromolecules; 2011 Feb; 12(2):432-40. PubMed ID: 21192640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic activity of αvβ3 integrins and the elastin binding protein enhance cell-matrix interactions on bioactive hydrogel surfaces.
    Patel D; Vandromme SE; Reid ME; Taite LJ
    Biomacromolecules; 2012 May; 13(5):1420-8. PubMed ID: 22449029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system.
    Coquerel B; Poyer F; Torossian F; Dulong V; Bellon G; Dubus I; Reber A; Vannier JP
    Glia; 2009 Dec; 57(16):1716-26. PubMed ID: 19373935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropoelastin.
    Wise SG; Weiss AS
    Int J Biochem Cell Biol; 2009 Mar; 41(3):494-7. PubMed ID: 18468477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications.
    Nivison-Smith L; Rnjak J; Weiss AS
    Acta Biomater; 2010 Feb; 6(2):354-9. PubMed ID: 19671457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of cross-linking and hydrophobic domains for self-assembly of elastin-like polypeptides.
    Miao M; Cirulis JT; Lee S; Keeley FW
    Biochemistry; 2005 Nov; 44(43):14367-75. PubMed ID: 16245953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers.
    Mithieux SM; Rasko JE; Weiss AS
    Biomaterials; 2004 Sep; 25(20):4921-7. PubMed ID: 15109852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.
    Lutolf MP; Hubbell JA
    Nat Biotechnol; 2005 Jan; 23(1):47-55. PubMed ID: 15637621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells.
    Joddar B; Ramamurthi A
    Biomaterials; 2006 May; 27(15):2994-3004. PubMed ID: 16457881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular interactions with elastin.
    Rodgers UR; Weiss AS
    Pathol Biol (Paris); 2005 Sep; 53(7):390-8. PubMed ID: 16085115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth factors upregulate deposition and remodeling of ECM by endothelial cells cultured for tissue-engineering applications.
    Divya P; Sreerekha PR; Krishnan LK
    Biomol Eng; 2007 Dec; 24(6):593-602. PubMed ID: 17869171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters.
    Kozel BA; Rongish BJ; Czirok A; Zach J; Little CD; Davis EC; Knutsen RH; Wagenseil JE; Levy MA; Mecham RP
    J Cell Physiol; 2006 Apr; 207(1):87-96. PubMed ID: 16261592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds.
    Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastin receptor and cell-matrix interactions in heart transplant-associated arteriosclerosis.
    Hinek A
    Arch Immunol Ther Exp (Warsz); 1997; 45(1):15-29. PubMed ID: 9090436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between cells and elastin fibers: an ultrastructural and immunocytochemical study.
    Perdomo JJ; Gounon P; Schaeverbeke M; Schaeverbeke J; Groult V; Jacob MP; Robert L
    J Cell Physiol; 1994 Mar; 158(3):451-8. PubMed ID: 8126068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 67-kD elastin-binding protein is a protective "companion" of extracellular insoluble elastin and intracellular tropoelastin.
    Hinek A; Rabinovitch M
    J Cell Biol; 1994 Jul; 126(2):563-74. PubMed ID: 8034752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of an enzymatically degradable multi-bioactive elastin-like recombinamer.
    Girotti A; Gonzalez-Valdivieso J; Santos M; Martin L; Arias FJ
    Int J Biol Macromol; 2020 Dec; 164():1640-1648. PubMed ID: 32758602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and morphology of self-assembly of an elastin-like polypeptide based on the alternating domain arrangement of human tropoelastin.
    Cirulis JT; Keeley FW
    Biochemistry; 2010 Jul; 49(27):5726-33. PubMed ID: 20527981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate.
    Hinek A; Mecham RP; Keeley F; Rabinovitch M
    J Clin Invest; 1991 Dec; 88(6):2083-94. PubMed ID: 1661296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.