These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21192670)

  • 21. General and targeted statistical potentials for protein-ligand interactions.
    Mooij WT; Verdonk ML
    Proteins; 2005 Nov; 61(2):272-87. PubMed ID: 16106379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
    Amini A; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Proteins; 2007 Dec; 69(4):823-31. PubMed ID: 17910057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Native atom types for knowledge-based potentials: application to binding energy prediction.
    Dominy BN; Shakhnovich EI
    J Med Chem; 2004 Aug; 47(18):4538-58. PubMed ID: 15317465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions.
    Ruvinsky AM
    J Comput Chem; 2007 Jun; 28(8):1364-72. PubMed ID: 17342720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins?
    Englebienne P; Moitessier N
    J Chem Inf Model; 2009 Jun; 49(6):1568-80. PubMed ID: 19445499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maximum common binding modes (MCBM): consensus docking scoring using multiple ligand information and interaction fingerprints.
    Renner S; Derksen S; Radestock S; Mörchen F
    J Chem Inf Model; 2008 Feb; 48(2):319-32. PubMed ID: 18211051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supervised scoring models with docked ligand conformations for structure-based virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2007; 47(5):1858-67. PubMed ID: 17685604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The consequences of scoring docked ligand conformations using free energy correlations.
    Spyrakis F; Amadasi A; Fornabaio M; Abraham DJ; Mozzarelli A; Kellogg GE; Cozzini P
    Eur J Med Chem; 2007 Jul; 42(7):921-33. PubMed ID: 17346861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database.
    Plewczynski D; Łaźniewski M; Augustyniak R; Ginalski K
    J Comput Chem; 2011 Mar; 32(4):742-55. PubMed ID: 20812323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A critical assessment of docking programs and scoring functions.
    Warren GL; Andrews CW; Capelli AM; Clarke B; LaLonde J; Lambert MH; Lindvall M; Nevins N; Semus SF; Senger S; Tedesco G; Wall ID; Woolven JM; Peishoff CE; Head MS
    J Med Chem; 2006 Oct; 49(20):5912-31. PubMed ID: 17004707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel, customizable scoring functions, parameterized using N-PLS, for structure-based drug discovery.
    Catana C; Stouten PF
    J Chem Inf Model; 2007; 47(1):85-91. PubMed ID: 17238252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consensus scoring for protein-ligand interactions.
    Feher M
    Drug Discov Today; 2006 May; 11(9-10):421-8. PubMed ID: 16635804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and evaluation of a generic evolutionary method for protein-ligand docking.
    Yang JM
    J Comput Chem; 2004 Apr; 25(6):843-57. PubMed ID: 15011256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations.
    Vasanthanathan P; Olsen L; Jørgensen FS; Vermeulen NP; Oostenbrink C
    Drug Metab Dispos; 2010 Aug; 38(8):1347-54. PubMed ID: 20413725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions.
    Søndergaard CR; Garrett AE; Carstensen T; Pollastri G; Nielsen JE
    J Med Chem; 2009 Sep; 52(18):5673-84. PubMed ID: 19711919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark.
    Kastritis PL; Bonvin AM
    J Proteome Res; 2010 May; 9(5):2216-25. PubMed ID: 20329755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.