These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21192703)
21. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Devillard E; McIntosh FM; Newbold CJ; Wallace RJ Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229 [TBL] [Abstract][Full Text] [Related]
22. Appraisal of conjugated linoleic acid production by probiotic potential of Pediococcus spp. GS4. Dubey V; Ghosh AR; Mandal BK Appl Biochem Biotechnol; 2012 Nov; 168(5):1265-76. PubMed ID: 22971829 [TBL] [Abstract][Full Text] [Related]
23. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Fuentes MC; Calsamiglia S; Cardozo PW; Vlaeminck B J Dairy Sci; 2009 Sep; 92(9):4456-66. PubMed ID: 19700707 [TBL] [Abstract][Full Text] [Related]
24. Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Kim YJ; Liu RH; Bond DR; Russell JB Appl Environ Microbiol; 2000 Dec; 66(12):5226-30. PubMed ID: 11097894 [TBL] [Abstract][Full Text] [Related]
25. A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. Fukuda S; Furuya H; Suzuki Y; Asanuma N; Hino T J Gen Appl Microbiol; 2005 Apr; 51(2):105-13. PubMed ID: 15942871 [TBL] [Abstract][Full Text] [Related]
26. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes. Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T J Dairy Sci; 2006 Mar; 89(3):1043-51. PubMed ID: 16507700 [TBL] [Abstract][Full Text] [Related]
27. Comparative studies on the metabolism of linoleic acid by rumen bacteria, protozoa, and their mixture in vitro. Or-Rashid MM; Alzahal O; McBride BW Appl Microbiol Biotechnol; 2011 Jan; 89(2):387-95. PubMed ID: 20865258 [TBL] [Abstract][Full Text] [Related]
28. Production of conjugated fatty acids by lactic acid bacteria. Ogawa J; Kishino S; Ando A; Sugimoto S; Mihara K; Shimizu S J Biosci Bioeng; 2005 Oct; 100(4):355-64. PubMed ID: 16310724 [TBL] [Abstract][Full Text] [Related]
29. Bioconversion of linoleic acid into conjugated linoleic acid by immobilized Lactobacillus reuteri. Lee SO; Hong GW; Oh DK Biotechnol Prog; 2003; 19(3):1081-4. PubMed ID: 12790685 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. McIntosh FM; Shingfield KJ; Devillard E; Russell WR; Wallace RJ Microbiology (Reading); 2009 Jan; 155(Pt 1):285-294. PubMed ID: 19118369 [TBL] [Abstract][Full Text] [Related]
31. Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk. Fontes AL; Pimentel L; RodrĂguez-Alcalá LM; Gomes A Sci Rep; 2018 Oct; 8(1):15591. PubMed ID: 30349012 [TBL] [Abstract][Full Text] [Related]
32. Increased expression of a molecular chaperone GroEL in response to unsaturated fatty acids by the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. Devillard E; Andant N; John Wallace R FEMS Microbiol Lett; 2006 Sep; 262(2):244-8. PubMed ID: 16923082 [TBL] [Abstract][Full Text] [Related]
33. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Troegeler-Meynadier A; Bret-Bennis L; Enjalbert F Reprod Nutr Dev; 2006; 46(6):713-24. PubMed ID: 17169317 [TBL] [Abstract][Full Text] [Related]
34. Purification and gene sequencing of conjugated linoleic acid reductase from a gastrointestinal bacterium, Butyrivibrio fibrisolvens. Fukuda S; Suzuki Y; Komori T; Kawamura K; Asanuma N; Hino T J Appl Microbiol; 2007 Aug; 103(2):365-71. PubMed ID: 17650196 [TBL] [Abstract][Full Text] [Related]
35. Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro. Troegeler-Meynadier A; Nicot MC; Bayourthe C; Moncoulon R; Enjalbert F J Dairy Sci; 2003 Dec; 86(12):4054-63. PubMed ID: 14740844 [TBL] [Abstract][Full Text] [Related]
36. Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Or-Rashid MM; AlZahal O; McBride BW Appl Microbiol Biotechnol; 2008 Dec; 81(3):533-41. PubMed ID: 18797866 [TBL] [Abstract][Full Text] [Related]
37. Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains. Gorissen L; De Vuyst L; Raes K; De Smet S; Leroy F Int J Food Microbiol; 2012 Apr; 155(3):234-40. PubMed ID: 22405353 [TBL] [Abstract][Full Text] [Related]
38. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. Nam IS; Garnsworthy PC J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387 [TBL] [Abstract][Full Text] [Related]
39. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. Coakley M; Ross RP; Nordgren M; Fitzgerald G; Devery R; Stanton C J Appl Microbiol; 2003; 94(1):138-45. PubMed ID: 12492934 [TBL] [Abstract][Full Text] [Related]