BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21192947)

  • 1. Probing membrane protein unfolding with pulse proteolysis.
    Schlebach JP; Kim MS; Joh NH; Bowie JU; Park C
    J Mol Biol; 2011 Mar; 406(4):545-51. PubMed ID: 21192947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unfolding pathways of individual bacteriorhodopsins.
    Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ
    Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating protein unfolding kinetics by pulse proteolysis.
    Na YR; Park C
    Protein Sci; 2009 Feb; 18(2):268-76. PubMed ID: 19177560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions.
    Chen GQ; Gouaux E
    Biochemistry; 1999 Nov; 38(46):15380-7. PubMed ID: 10563824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the folding kinetics of bacteriorhodopsin.
    Schlebach JP; Cao Z; Bowie JU; Park C
    Protein Sci; 2012 Jan; 21(1):97-106. PubMed ID: 22095725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the structure of an integral membrane protein under semi-denaturing conditions by laser-induced oxidative labeling and mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Mol Biol; 2009 Dec; 394(5):968-81. PubMed ID: 19804782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding and Unfolding Kinetics of Unpurified Proteins by Pulse Proteolysis.
    Shima K; Okada J; Sano S; Takano K
    Protein Pept Lett; 2016; 23(11):976-987. PubMed ID: 27653628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ
    Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic stability of bacteriorhodopsin mutants measured relative to the bacterioopsin unfolded state.
    Cao Z; Schlebach JP; Park C; Bowie JU
    Biochim Biophys Acta; 2012 Apr; 1818(4):1049-54. PubMed ID: 21880269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH dependence of bacteriorhodopsin thermal unfolding.
    Brouillette CG; Muccio DD; Finney TK
    Biochemistry; 1987 Nov; 26(23):7431-8. PubMed ID: 3427085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved membrane protein folding studies.
    Khanal A; Pan Y; Brown LS; Konermann L
    J Mass Spectrom; 2012 Dec; 47(12):1620-6. PubMed ID: 23280751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow unfolding pathway of hyperthermophilic Tk-RNase H2 examined by pulse proteolysis using the stable protease Tk-subtilisin.
    Okada J; Koga Y; Takano K; Kanaya S
    Biochemistry; 2012 Nov; 51(45):9178-91. PubMed ID: 23106363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis combined with oxidative methionine labeling for probing structural transitions of a membrane protein by mass spectrometry.
    Pan Y; Brown L; Konermann L
    J Am Soc Mass Spectrom; 2010 Nov; 21(11):1947-56. PubMed ID: 20829064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy.
    Sapra KT; Besir H; Oesterhelt D; Muller DJ
    J Mol Biol; 2006 Jan; 355(4):640-50. PubMed ID: 16330046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium dodecyl sulfate polyacrylamide gel electrophoresis as a method for studying the stability of subtilisin.
    Narhi LO; Arakawa T
    Biochim Biophys Acta; 1989 Feb; 990(2):144-9. PubMed ID: 2644972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural biology. Unraveling a membrane protein.
    Forbes JG; Lorimer GH
    Science; 2000 Apr; 288(5463):63-4. PubMed ID: 10766636
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantitative determination of protein stability and ligand binding by pulse proteolysis.
    Park C; Marqusee S
    Curr Protoc Protein Sci; 2006 Dec; Chapter 20():20.11.1-20.11.14. PubMed ID: 18429306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.