These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21192953)

  • 1. Parameter identification in epidemic models.
    Hadeler KP
    Math Biosci; 2011 Feb; 229(2):185-9. PubMed ID: 21192953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the transmission rate for a highly infectious disease.
    Becker NG; Hasofer AM
    Biometrics; 1998 Jun; 54(2):730-8. PubMed ID: 9629653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing methods to quantify experimental transmission of infectious agents.
    Velthuis AG; De Jong MC; De Bree J
    Math Biosci; 2007 Nov; 210(1):157-76. PubMed ID: 17604060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the infection period distribution on the epidemic spread in a metapopulation model.
    Vergu E; Busson H; Ezanno P
    PLoS One; 2010 Feb; 5(2):e9371. PubMed ID: 20195473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of time distribution shape on a complex epidemic model.
    Camitz M; Svensson A
    Bull Math Biol; 2009 Nov; 71(8):1902-13. PubMed ID: 19475454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A symbolic investigation of superspreaders.
    McCaig C; Begon M; Norman R; Shankland C
    Bull Math Biol; 2011 Apr; 73(4):777-94. PubMed ID: 21181505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation and inference of R0 of an infectious pathogen by a removal method.
    Ferrari MJ; Bjørnstad ON; Dobson AP
    Math Biosci; 2005 Nov; 198(1):14-26. PubMed ID: 16216286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter estimation and uncertainty quantification for an epidemic model.
    Capaldi A; Behrend S; Berman B; Smith J; Wright J; Lloyd AL
    Math Biosci Eng; 2012 Jul; 9(3):553-76. PubMed ID: 22881026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal intervention for an epidemic model under parameter uncertainty.
    Clancy D; Green N
    Math Biosci; 2007 Feb; 205(2):297-314. PubMed ID: 17070866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time variations in the generation time of an infectious disease: implications for sampling to appropriately quantify transmission potential.
    Nishiura H
    Math Biosci Eng; 2010 Oct; 7(4):851-69. PubMed ID: 21077712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the effect of urbanization on the transmission of an infectious disease.
    Zhang P; Atkinson PM
    Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission.
    Korobeinikov A
    Bull Math Biol; 2006 Apr; 68(3):615-26. PubMed ID: 16794947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A note on generation times in epidemic models.
    Svensson A
    Math Biosci; 2007 Jul; 208(1):300-11. PubMed ID: 17174352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the number of recovered individuals in the SIS and SIR stochastic epidemic models.
    Artalejo JR; Economou A; Lopez-Herrero MJ
    Math Biosci; 2010 Nov; 228(1):45-55. PubMed ID: 20801133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical models approximating individual processes: a validation method.
    Favier C; Degallier N; Menkès CE
    Math Biosci; 2010 Dec; 228(2):127-35. PubMed ID: 20816866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.