These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2119304)

  • 1. A guanyloribonuclease of mouse liver cytosol.
    Pantazaki A; Georgatsos JG
    Eur J Biochem; 1990 Aug; 192(1):115-7. PubMed ID: 2119304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity and other properties of three ribonucleases of Tetrahymena pyriformis.
    Maouri A; Georgatsos JG
    Eur J Biochem; 1987 Nov; 168(3):523-8. PubMed ID: 3117547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of three cytosolic ribonucleases of mouse liver.
    Mavrothalassitis GJ; Georgatsos JG
    Eur J Biochem; 1984 Aug; 142(3):481-6. PubMed ID: 6468374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new affinity adsorbent for guanyloribonuclease. Guanylyl-(2'-5')-guanosine coupled to aminohexyl-Sepharose.
    Ishiwata K; Yoshida H
    J Biochem; 1978 Mar; 83(3):783-8. PubMed ID: 25271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of guanylic RNases to polynucleotide substrates.
    Both V; Moiseyev GP; Sevcik J
    Biochem Biophys Res Commun; 1991 Jun; 177(2):630-5. PubMed ID: 1904722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Specificity of extracellular alkaline RNAase from Penicillium chrysogenum 152A].
    Bezborodova SI; Markelova NY; Gulayeva VI
    Biokhimiia; 1975; 40(3):592-7. PubMed ID: 1110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ribonuclease Fl1 from Fusarium lateriticum. Isolation, substrate specificity and amino acid sequence].
    Bezborodova SI; Chepurnova NK; Shliapnikov SV
    Bioorg Khim; 1988 Jul; 14(7):893-904. PubMed ID: 3142486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Specificity of the degradation and synthesis of dinucleoside monophosphates by RNAase C2 of Asp. clavatus].
    Bezborodova SI; Guliaeva VI; Morozova VG
    Prikl Biokhim Mikrobiol; 1975; 11(1):9-13. PubMed ID: 236554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and characterization of the human RNase kappa, an ortholog of Cc RNase.
    Economopoulou MA; Fragoulis EG; Sideris DC
    Nucleic Acids Res; 2007; 35(19):6389-98. PubMed ID: 17881363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structure determination using nuclease digestion.
    Nilsen TW
    Cold Spring Harb Protoc; 2013 Apr; 2013(4):379-82. PubMed ID: 23547152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of a nucleoprotein bound RNase in rat brain and liver.
    Lambert R; Murthy MR
    Neurochem Res; 1986 May; 11(5):617-24. PubMed ID: 3088463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fluorogenic substrate for ribonucleases. Synthesis and enzymatic characterization.
    Zelenko O; Neumann U; Brill W; Pieles U; Moser HE; Hofsteenge J
    Nucleic Acids Res; 1994 Jul; 22(14):2731-9. PubMed ID: 8052528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of an alkaline ribonuclease from the hepatic cytosol fraction of bullfrog, Rana catesbeiana.
    Nagano H; Kiuchi H; Abe Y; Shukuya R
    J Biochem; 1976 Jul; 80(1):19-26. PubMed ID: 9378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple forms of ribonuclease H from rat liver cytosol.
    Sawai Y; Yanokura M; Tsukada K
    J Biochem; 1979 Sep; 86(3):757-64. PubMed ID: 41840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glu 46 of ribonuclease T1 is an essential residue for the recognition of guanine base.
    Nishikawa S; Kimura T; Morioka H; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1988 Jan; 150(1):68-74. PubMed ID: 3122758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops.
    McDowall KJ; Kaberdin VR; Wu SW; Cohen SN; Lin-Chao S
    Nature; 1995 Mar; 374(6519):287-90. PubMed ID: 7533896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific interaction of base-specific nucleases with nucleosides and nucleotides.
    Egami F; Oshima T; Uchida T
    Mol Biol Biochem Biophys; 1980; 32():250-77. PubMed ID: 6255305
    [No Abstract]   [Full Text] [Related]  

  • 20. Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA.
    Deutscher MP; Marlor CW; Zaniewski R
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4290-3. PubMed ID: 6379642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.