These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 2119316)
61. Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. Heimo H; Palmu K; Suominen I Protein Expr Purif; 1997 Jun; 10(1):70-9. PubMed ID: 9179293 [TBL] [Abstract][Full Text] [Related]
62. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Salgaonkar M; Nadar SS; Rathod VK Int J Biol Macromol; 2018 Jul; 113():464-475. PubMed ID: 29458106 [TBL] [Abstract][Full Text] [Related]
63. The effect of proteases on the synthesis of glucoamylase by mutants of Aspergillus niger C. Fiedurek J; Paszczyński A; Ilczuk Z Acta Microbiol Pol; 1985; 34(1):25-32. PubMed ID: 2579524 [TBL] [Abstract][Full Text] [Related]
64. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Tanaka A; Karita S; Kosuge Y; Senoo K; Obata H; Kitamoto N Biosci Biotechnol Biochem; 1998 Nov; 62(11):2127-32. PubMed ID: 9972233 [TBL] [Abstract][Full Text] [Related]
65. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme. Uthumporn U; Shariffa YN; Karim AA Appl Biochem Biotechnol; 2012 Mar; 166(5):1167-82. PubMed ID: 22203397 [TBL] [Abstract][Full Text] [Related]
66. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch. Goto M; Kuwano E; Kanlayakrit W; Hayashida S Biosci Biotechnol Biochem; 1995 Jan; 59(1):16-20. PubMed ID: 7765970 [TBL] [Abstract][Full Text] [Related]
67. Releasing of intracellular glucoamylase from Aspergillus niger. Hsieh WT; Wu R Proc Natl Sci Counc Repub China B; 1984 Jan; 8(1):1-3. PubMed ID: 6442427 [TBL] [Abstract][Full Text] [Related]
68. Evidence for a polysaccharide-binding domain in Hormoconis resinae glucoamylase P: effects of its proteolytic removal on substrate specificity and inhibition by beta-cyclodextrin. Fagerström R Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2399-407. PubMed ID: 7952191 [TBL] [Abstract][Full Text] [Related]
69. Large-scale purification of fungal glucoamylases using anion-exchange resin chromatography. Bhella RS; Altosaar I Anal Biochem; 1984 Jul; 140(1):200-2. PubMed ID: 6435476 [TBL] [Abstract][Full Text] [Related]
70. Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto-oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Svensson B; Sierks MR Carbohydr Res; 1992 Apr; 227():29-44. PubMed ID: 1499029 [TBL] [Abstract][Full Text] [Related]
71. Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99. Xian L; Feng JX Int J Biol Macromol; 2018 Feb; 107(Pt A):1122-1130. PubMed ID: 28951303 [TBL] [Abstract][Full Text] [Related]
72. Interaction of radical anion probes with glucoamylase I from Aspergillus niger. Copper PL; Power DM; Richards JT; Davies JV Int J Radiat Biol Relat Stud Phys Chem Med; 1978 Nov; 34(5):431-8. PubMed ID: 38219 [TBL] [Abstract][Full Text] [Related]
73. Purification and characterization of heterogeneous glucoamylases from Monascus purpureus. Tachibana S; Yasuda M Biosci Biotechnol Biochem; 2007 Oct; 71(10):2573-6. PubMed ID: 17928688 [TBL] [Abstract][Full Text] [Related]
74. Macroaffinity ligand-facilitated three-phase partitioning for purification of glucoamylase and pullulanase using alginate. Mondal K; Sharma A; Gupta MN Protein Expr Purif; 2003 Mar; 28(1):190-5. PubMed ID: 12651124 [TBL] [Abstract][Full Text] [Related]
75. Subsite affinities of Aspergillus niger glucoamylase II determined with p-nitrophenylmaltooligosaccharides. Ermer J; Rose K; Hübner G; Schellenberger A Biol Chem Hoppe Seyler; 1993 Feb; 374(2):123-8. PubMed ID: 8471180 [TBL] [Abstract][Full Text] [Related]
76. Properties of the raw-starch digesting amylase of Aspergillus sp. K-27: a synergistic action of glucoamylase and alpha-amylase. Abe JI; Nakajima K; Nagano H; Hizukuri S; Obata K Carbohydr Res; 1988 Apr; 175(1):85-92. PubMed ID: 3132328 [TBL] [Abstract][Full Text] [Related]
77. Purification and characterization of a glucoamylase from Aspergillus saitoi. Takahashi T; Inokuchi N; Irie M J Biochem; 1981 Jan; 89(1):125-34. PubMed ID: 6783630 [TBL] [Abstract][Full Text] [Related]
78. Strain selection and medium optimization for glucoamylase production from industrial potato waste by Aspergillus niger. Izmirlioglu G; Demirci A J Sci Food Agric; 2016 Jun; 96(8):2788-95. PubMed ID: 26333342 [TBL] [Abstract][Full Text] [Related]
79. Isoglucose production from raw starchy materials based on a two-stage enzymatic system. Gromada A; Fiedurek J; Szczodrak J Pol J Microbiol; 2008; 57(2):141-8. PubMed ID: 18646402 [TBL] [Abstract][Full Text] [Related]
80. Efficient and cost-reduced glucoamylase fed-batch production with alternative carbon sources. Luo H; Liu H; He Z; Zhou C; Shi Z J Microbiol Biotechnol; 2015 Feb; 25(2):185-95. PubMed ID: 25262682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]