These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21193263)

  • 41. Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation.
    Wang Y; Liu H; Liu G; Xie Y; Gao S
    Sci Total Environ; 2015 Feb; 506-507():252-8. PubMed ID: 25460958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid.
    Mak MS; Rao P; Lo IM
    Environ Pollut; 2011 Feb; 159(2):377-82. PubMed ID: 21130550
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant.
    Huang ZS; Wang L; Liu YL; Jiang J; Xue M; Xu CB; Zhen YF; Wang YC; Ma J
    Environ Sci Technol; 2018 Dec; 52(23):13897-13907. PubMed ID: 30379540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review.
    Van der Zee FP; Cervantes FJ
    Biotechnol Adv; 2009; 27(3):256-77. PubMed ID: 19500549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of inorganic anion on Cr(VI) photo-reduction in the presence of ferric ion.
    Tzou YM; Hsu CL; Chen CC; Chen JH; Wu JJ; Tseng KJ
    J Hazard Mater; 2008 Aug; 156(1-3):374-80. PubMed ID: 18249065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of surface complexation modeling to the reactivity of iron(II) with nitroaromatic and oxime carbamate contaminants in aqueous TiO2 suspensions.
    Nano GV; Strathmann TJ
    J Colloid Interface Sci; 2008 May; 321(2):350-9. PubMed ID: 18342323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment--a review.
    Alsheyab M; Jiang JQ; Stanford C
    J Environ Manage; 2009 Mar; 90(3):1350-6. PubMed ID: 19027217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accelerated Oxidation of Organic Contaminants by Ferrate(VI): The Overlooked Role of Reducing Additives.
    Feng M; Jinadatha C; McDonald TJ; Sharma VK
    Environ Sci Technol; 2018 Oct; 52(19):11319-11327. PubMed ID: 30187746
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of the ferrates (FeIV-VI) in combination with hydrogen peroxide for rapid and effective remediation of water--laboratory and pilot study.
    Lacina P; Goold S
    Water Sci Technol; 2015; 72(10):1869-78. PubMed ID: 26540550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents.
    Luo C; Feng M; Sharma VK; Huang CH
    Environ Sci Technol; 2019 May; 53(9):5272-5281. PubMed ID: 30933490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradability of hexachlorocyclohexanes in water using ferrate (VI).
    Homolková M; Hrabák P; Kolář M; Černík M
    Water Sci Technol; 2015; 71(3):405-11. PubMed ID: 25714640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Process optimization in use of zero valent iron nanoparticles for oxidative transformations.
    Mylon SE; Sun Q; Waite TD
    Chemosphere; 2010 Sep; 81(1):127-31. PubMed ID: 20619873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(VI) towards oxidation of organic contaminants.
    Luo M; Zhou H; Zhou P; Lai L; Liu W; Ao Z; Yao G; Zhang H; Lai B
    Water Res; 2021 Sep; 203():117548. PubMed ID: 34412019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of activated carbon as a reactive support to produce highly active-regenerable Fe-based reduction system for environmental remediation.
    Pereira MC; Coelho FS; Nascentes CC; Fabris JD; Araújo MH; Sapag K; Oliveira LC; Lago RM
    Chemosphere; 2010 Sep; 81(1):7-12. PubMed ID: 20723968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction.
    Larese-Casanova P; Cwiertny DM; Scherer MM
    Environ Sci Technol; 2010 May; 44(10):3765-71. PubMed ID: 20408543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aqueous ferryl(IV) ion: kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water.
    Pestovsky O; Bakac A
    Inorg Chem; 2006 Jan; 45(2):814-20. PubMed ID: 16411719
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.
    VanEngelen MR; Peyton BM; Mormile MR; Pinkart HC
    Biodegradation; 2008 Nov; 19(6):841-50. PubMed ID: 18401687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS.
    Lee Y; Yoon J; von Gunten U
    Water Res; 2005 May; 39(10):1946-53. PubMed ID: 15876448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation of octylphenol by ferrate(VI).
    Anquandah GA; Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jan; 44(1):62-6. PubMed ID: 19085596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.