These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21193560)

  • 1. The microbubble or the microparticle?
    Carraway MS; Key NS
    J Appl Physiol (1985); 2011 Feb; 110(2):307-8. PubMed ID: 21193560
    [No Abstract]   [Full Text] [Related]  

  • 2. Microparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries.
    Thom SR; Yang M; Bhopale VM; Huang S; Milovanova TN
    J Appl Physiol (1985); 2011 Feb; 110(2):340-51. PubMed ID: 20966192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury.
    Thom SR; Yang M; Bhopale VM; Milovanova TN; Bogush M; Buerk DG
    J Appl Physiol (1985); 2013 Mar; 114(5):550-8. PubMed ID: 23264541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbic acid abrogates microparticle generation and vascular injuries associated with high-pressure exposure.
    Yang M; Bhopale VM; Thom SR
    J Appl Physiol (1985); 2015 Jul; 119(1):77-82. PubMed ID: 25977448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microparticle-induced vascular injury in mice following decompression is inhibited by hyperbaric oxygen: effects on microparticles and interleukin-1β.
    Thom SR; Bhopale VM; Yang M
    J Appl Physiol (1985); 2019 Apr; 126(4):1006-1014. PubMed ID: 30763157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice.
    Yang M; Bhopale VM; Thom SR
    J Appl Physiol (1985); 2015 Aug; 119(3):219-22. PubMed ID: 26048974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microparticle and interleukin-1β production with human simulated compressed air diving.
    Brett KD; Nugent NZ; Fraser NK; Bhopale VM; Yang M; Thom SR
    Sci Rep; 2019 Sep; 9(1):13320. PubMed ID: 31527725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of leukocyte activation in pigs with neurologic decompression sickness.
    Nyquist PA; Dick EJ; Buttolph TB
    Aviat Space Environ Med; 2004 Mar; 75(3):211-4. PubMed ID: 15018287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent neuroinflammation and functional deficits in a murine model of decompression sickness.
    Bhat AR; Arya AK; Bhopale VM; Imtiyaz Z; Xu S; Bedir D; Thom SR
    J Appl Physiol (1985); 2024 Jul; 137(1):63-73. PubMed ID: 38660728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries.
    Yang M; Milovanova TN; Bogush M; Uzun G; Bhopale VM; Thom SR
    J Appl Physiol (1985); 2012 Jan; 112(1):204-11. PubMed ID: 21960660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-derived microparticles in haemostasis and vascular medicine.
    Burnier L; Fontana P; Kwak BR; Angelillo-Scherrer A
    Thromb Haemost; 2009 Mar; 101(3):439-51. PubMed ID: 19277403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroinflammation with increased glymphatic flow in a murine model of decompression sickness.
    Thom SR; Bhopale VM; Bhat AR; Arya AK; Ruhela D; Qiao G; Li X; Tang S; Xu S
    J Neurophysiol; 2023 Mar; 129(3):662-671. PubMed ID: 36752495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature and incidence of bubbles in the spinal cord of decompressed goats.
    Palmer AC
    Undersea Hyperb Med; 1997 Sep; 24(3):193-200. PubMed ID: 9308143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures.
    Randsøe T; Kvist TM; Hyldegaard O
    J Appl Physiol (1985); 2008 Nov; 105(5):1492-7. PubMed ID: 18756005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diving decompression fails to activate complement.
    Shastri KA; Logue GL; Lundgren CE; Logue CJ; Suggs DF
    Undersea Hyperb Med; 1997 Jun; 24(2):51-7. PubMed ID: 9171463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new biophysical decompression model for estimating the risk of articular bends during and after decompression.
    Hugon J; Rostain JC; Gardette B
    J Theor Biol; 2011 Aug; 283(1):168-79. PubMed ID: 21609722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age, gender and disease-related platelet and neutrophil activation ex vivo in whole blood samples from patients with Behçet's disease.
    Macey M; Hagi-Pavli E; Stewart J; Wallace GR; Stanford M; Shirlaw P; Fortune F
    Rheumatology (Oxford); 2011 Oct; 50(10):1849-59. PubMed ID: 21719422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbubble damage to the blood-brain barrier: relevance to decompression sickness.
    Hills BA; James PB
    Undersea Biomed Res; 1991 Mar; 18(2):111-6. PubMed ID: 2042262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Automatic control of decompression for prevention of decompression sickness].
    Nashimoto I; Goto Y
    Nihon Eiseigaku Zasshi; 1975 Apr; 30(1):265. PubMed ID: 1169591
    [No Abstract]   [Full Text] [Related]  

  • 20. Reversibility in blood-brain barrier, microcirculation, and histology in rat brain after decompression.
    Nohara A; Yusa T
    Undersea Hyperb Med; 1997; 24(1):15-21. PubMed ID: 9068151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.