These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2119394)

  • 1. Force during stretch and shortening of frog sartorius muscle: effects of intracellular acidification due to increased carbon dioxide.
    Curtin NA
    J Muscle Res Cell Motil; 1990 Jun; 11(3):251-7. PubMed ID: 2119394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification.
    Curtin NA; Edman KA
    J Physiol; 1994 Mar; 475(3):483-94. PubMed ID: 8006830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the change in intracellular pH during fatigue large enough to be the main cause of fatigue?
    Renaud JM; Allard Y; Mainwood GW
    Can J Physiol Pharmacol; 1986 Jun; 64(6):764-7. PubMed ID: 3093036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intracellular pH on force and heat production in isometric contraction of frog muscle fibres.
    Curtin NA; Kometani K; Woledge RC
    J Physiol; 1988 Feb; 396():93-104. PubMed ID: 3137330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres.
    Edman KA; Mattiazzi AR
    J Muscle Res Cell Motil; 1981 Sep; 2(3):321-34. PubMed ID: 6974740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lactate on intracellular pH and force recovery of fatigued sartorius muscles of the frog, Rana pipiens.
    Renaud JM
    J Physiol; 1989 Sep; 416():31-47. PubMed ID: 2607453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of carbon dioxide and tetanus duration on relaxation of frog skeletal muscle.
    Curtin NA
    J Muscle Res Cell Motil; 1986 Jun; 7(3):269-75. PubMed ID: 3090099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1990 May; 424():133-49. PubMed ID: 2391650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Series elasticity in frog sartorius muscle subjected to stretch-shortening cycles.
    Lensel-Corbeil G; Goubel F
    J Biomech; 1990; 23(2):121-6. PubMed ID: 2312518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fatigue and reduced intracellular pH on segment dynamics in 'isometric' relaxation of frog muscle fibres.
    Curtin NA; Edman KA
    J Physiol; 1989 Jun; 413():159-74. PubMed ID: 2600846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tension response to stretch of intact skeletal muscle fibres of the frog at varied tonicity of the extracellular medium.
    Månsson A
    J Muscle Res Cell Motil; 1994 Apr; 15(2):145-57. PubMed ID: 8051288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo.
    Renaud JM; Light P
    Can J Physiol Pharmacol; 1992 Sep; 70(9):1236-46. PubMed ID: 1493591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intracellular acidification and varied temperature on force, stiffness, and speed of shortening in frog muscle fibers.
    Radzyukevich T; Edman KA
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C106-13. PubMed ID: 14998789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature.
    Westerblad H; Bruton JD; Lännergren J
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):193-204. PubMed ID: 9097943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in force and stiffness during stretch of skeletal muscle fibers, effects of hypertonicity.
    Månsson A
    Biophys J; 1989 Aug; 56(2):429-33. PubMed ID: 2789080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers.
    Granzier HL; Burns DH; Pollack GH
    Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbon dioxide on heat production of frog skeletal muscles.
    Kitano T
    J Physiol; 1988 Mar; 397():643-55. PubMed ID: 3137334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.